264
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Determining the effects of 2-ethylhexyl nitrate blend on isolated diesel engine attributes using the experimental and ANN approaches

ORCID Icon & ORCID Icon
Pages 2823-2838 | Received 10 May 2019, Accepted 24 Jul 2019, Published online: 08 Aug 2019

References

  • Abedin, M. J., H. H. Masjuki, M. A. Kalam, A. Sanjid, and A. M. Ashraful. 2014. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils. Energy Conversion And Management 85:173–89. doi:10.1016/j.enconman.2014.05.065.
  • Atmanlı, A., E. İleri, and B. Yüksel. 2014. Experimental investigation of engine performance and exhaust emissions of a diesel engine fueled with diesel – N -butanol – Vegetable oil blends. Energy Conversion And Management 81:312–21. doi:10.1016/j.enconman.2014.02.049.
  • Çelelebi, K., E. Uludamar, E. Tosun, Ş. Yıldızhan, K. Aydın, and M. Özcanlı. 2017. Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition. Fuel 197:159–73. doi:10.1016/j.fuel.2017.01.113.
  • Dharma, S., M. H. Hassan, H. C. Ong, A. H. Sebayang, A. S. Silitonga, F. Kusumo, and J. Milano. 2017. Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. Journal Of Cleaner Production 164:618–33. doi:10.1016/j.jclepro.2017.06.065.
  • Fayyazbakhsh, A., and V. Pirouzfar. 2017. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renewable And Sustainable Energy Reviews 74:891–901. doi:10.1016/j.rser.2017.03.046.
  • Gill, S. S., A. Tsolakis, J. M. Herreros, and A. P. E. York. 2012. Diesel emissions improvements through the use of biodiesel or oxygenated blending components. Fuel 95:578–86. doi:10.1016/j.fuel.2011.11.047.
  • Gnanamoorthi, V., and M. Jayaram. 2018. Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine. Ceramics International 45:3166–76. doi:10.1016/j.ceramint.2018.10.218.
  • Hazar, H. 2011. Characterization and effect of using cotton methyl ester as fuel in a LHR diesel engine. Energy Conversion And Management 52:258–63. doi:10.1016/J.ENCONMAN.2010.06.066.
  • Hazar, H. 2017. Investigation of the effects of tripropylene glycol addition to diesel fuel on combustion and exhaust emissions at an isolated diesel engine. Energy Conversion And Management 142:62–68. doi:10.1016/j.enconman.2017.02.082.
  • Hazar, H., and H. Gul. 2016. Modeling analysis of chrome carbide (Cr3C2) coating on parts of combustion chamber of a SI engine. Energy 115:76–87. doi:10.1016/j.energy.2016.08.083.
  • Hazar, H., and H. Sevinc. 2019. Investigation of the effects of pre-heated linseed oil on performance and exhaust emission at a coated diesel engine. Renewable Energy 130:961–67. doi:10.1016/j.renene.2018.07.003.
  • Huang, H., Q. Liu, W. Teng, M. Pan, C. Liu, and Q. Wang. 2018. Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4mixtures. Applied Energy 227:38–48. doi:10.1016/j.apenergy.2017.09.088.
  • Ickes, A. M., S. V. Bohac, and D. N. Assanis. 2009. Effect of 2-ethylhexyl nitrate cetane improver on NOx emissions from premixed low- temperature diesel combustion. Energy And Fuels 23:4943–48. doi:10.1021/ef900408e.
  • Ileri, E. 2016. Experimental study of 2-ethylhexyl nitrate effects on engine performance and exhaust emissions of a diesel engine fueled with n-butanol or 1-pentanol diesel-sunflower oil blends. Energy Conversion And Management 118:320–30. doi:10.1016/j.enconman.2016.04.015.
  • Ileri, E., and G. Koçar. 2013. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester-diesel blend. Energy Conversion And Management 76:145–54. doi:10.1016/j.enconman.2013.07.037.
  • Imdadul, H. K., H. H. Masjuki, M. A. Kalam, N. W. M. Zulkifli, M. Kamruzzaman, M. M. Shahin, and M. M. Rashed. 2017a. Evaluation of oxygenated n-butanol-biodiesel blends along with ethyl hexyl nitrate as cetane improver on diesel engine attributes. Journal Of Cleaner Production 141:928–39. doi:10.1016/j.jclepro.2016.09.140.
  • Imdadul, H. K., M. M. Rashed, M. M. Shahin, H. H. Masjuki, M. A. Kalam, M. Kamruzzaman, and H. K. Rashedul. 2017b. Quality improvement of biodiesel blends using different promising fuel additives to reduce fuel consumption and NO emission from CI engine. Energy Conversion And Management 138:327–37. doi:10.1016/j.enconman.2017.01.077.
  • Jena, S. P., S. K. Acharya, H. C. Das, P. P. Patnaik, and S. Bajpai. 2017. Investigation of the effect of FeCl 3 on combustion and emission of diesel engine with thermal barrier coating. Sustainable Environment Research 1–7. doi:10.1016/j.serj.2017.10.002.
  • Karthickeyan, V. 2019. Effect of cetane enhancer on Moringa oleifera biodiesel in a thermal coated direct injection diesel engine. Fuel 235:538–50. doi:10.1016/j.fuel.2018.08.030.
  • Krishna, M. V. S. M., T. O. Prakash, P. Ushasri, N. Janardhan, and P. V. K. Murthy. 2016. Experimental investigations on direct injection diesel engine with ceramic coated combustion chamber with carbureted alcohols and crude jatropha oil. Renewable And Sustainable Energy Reviews 53:606–28. doi:10.1016/j.rser.2015.09.011.
  • Krishna, M. V. S. M., V. V. R. S. Rao, T. K. K. Reddy, and P. V. K. Murthy. 2014. Comparative studies on performance evaluation of di diesel engine with high grade low heat rejection combustion chamber with carbureted alcohols and crude jatropha oil. Renewable And Sustainable Energy Reviews 36:1–19. doi:10.1016/j.rser.2014.04.020.
  • Krishnamani, S., V. Harish, V. Harishankar, and T. M. Raj. 2018. The experimental investigation on performance and emission characteristics of ceramic coated diesel engine using diesel and biodiesel. Materials Today: Proceedings 5:16327–37. doi:10.1016/j.matpr.2018.05.127.
  • Kshirsagar, C. M., and R. Anand. 2017. Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses. Applied Energy 189:555–67. doi:10.1016/j.apenergy.2016.12.045.
  • Labeckas, G., S. Slavinskas, and I. Kanapkienė. 2017. The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine – Part 1. Energy Conversion And Management 148:1003–27. doi:10.1016/j.enconman.2017.06.050.
  • Li, R., Z. Wang, P. Ni, Y. Zhao, M. Li, and L. Li. 2014. Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel 128:180–87. doi:10.1016/j.fuel.2014.03.011.
  • Lü, X. C., J. G. Yang, W. G. Zhang, and Z. Huang. 2005. Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy And Fuels 19:1879–88. doi:10.1021/ef0500179.
  • Mohamed Ismail, H., H. K. Ng, C. W. Queck, and S. Gan. 2012. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy 92:769–77. doi:10.1016/j.apenergy.2011.08.027.
  • MohamedMusthafa, M., S. P. Sivapirakasam, and M. Udayakumar. 2011. Comparative studies on fly ash coated low heat rejection diesel engine on performance and emission characteristics fueled by rice bran and pongamia methyl ester and their blend with diesel. Energy 36:2343–51. doi:10.1016/j.energy.2010.12.047.
  • Mohapatra, D., R. K. Swain, S. P. Jena, S. K. Acharya, and P. P. Patnaik. 2018. Effect of steam injection and FeCl3as fuel additive on performance of thermal barrier coated diesel engine. Sustainable Environment Research 28:247–55. doi:10.1016/j.serj.2018.03.004.
  • Musthafa, M. M. 2017. Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive. Energy 134:234–39. doi:10.1016/j.energy.2017.06.012.
  • Oǧuz, H., I. Saritas, and H. E. Baydan. 2010. Prediction of diesel engine performance using biofuels with artificial neural network. Expert Systems With Applications 37:6579–86. doi:10.1016/j.eswa.2010.02.128.
  • Öztürk, U., H. Hazar, and F. Yılmaz. 2019. Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine. Energy 167:260–68. doi:10.1016/j.energy.2018.10.198.
  • Patel, N. K., and R. N. Singh. 2014. Optimization of NOx emission from soya biodiesel fuelled diesel engine using cetane improver (DTBP). Jordan Journal Of Mechanical And Industrial Engineering. 8:213–17. (accessed August 24, 2018). https://www.mendeley.com/research-papers/optimization-nox-emission-soya-biodiesel-fuelled-diesel-engine-using-cetane-improver-dtbp/?utm_source=desktop&utm_medium=1.19.2&utm_campaign=open_catalog&userDocumentId=%7B33ea774c-e122-4c49-aba1-fea06a4c5703%7D.
  • Prasada Rao, K., T. Victor Babu, G. Anuradha, and B. V. Appa Rao. 2017. IDI diesel engine performance and exhaust emission analysis using biodiesel with an artificial neural network (ANN). Egyptian Journal Of Petroleum 26:593–600. doi:10.1016/j.ejpe.2016.08.006.
  • Satsangi, D. P., and N. Tiwari. 2018. Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel 221:44–60. doi:10.1016/j.fuel.2018.02.060.
  • Silitonga, A. S., H. H. Masjuki, H. C. Ong, A. H. Sebayang, S. Dharma, F. Kusumo, J. Siswantoro, J. Milano, K. Daud, T. M. I. Mahlia, et al. 2018. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 159:1075–87. doi:10.1016/j.energy.2018.06.202.
  • Soukht Saraee, H., H. Taghavifar, and S. Jafarmadar. 2017. Experimental and numerical consideration of the effect of CeO2nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network. Applied Thermal Engineering 113:663–72. doi:10.1016/j.applthermaleng.2016.11.044.
  • Taghavifar, H., S. Khalilarya, and S. Jafarmadar. 2014. Engine structure modifications effect on the flow behavior, combustion, and performance characteristics of di diesel engine. Energy Conversion And Management 85:20–32. doi:10.1016/j.enconman.2014.05.076.
  • Teoh, Y. H., H. H. Masjuki, H. G. How, M. A. Kalam, K. H. Yu, and A. Alabdulkarem. 2018. Effect of two-stage injection dwell angle on engine combustion and performance characteristics of a common-rail diesel engine fueled with coconut oil methyl esters-diesel fuel blends. Fuel 234:227–37. doi:10.1016/j.fuel.2018.07.036.
  • Yang, F., H. Cho, H. Zhang, J. Zhang, and Y. Wu. 2018. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery. Energy Conversion And Management 164:15–26. doi:10.1016/j.enconman.2018.02.062.
  • Yaşar, A., A. Keskin, Ş. Yıldızhan, and E. Uludamar. 2019. Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles. Fuel 239:1224–30. doi:10.1016/j.fuel.2018.11.113.
  • Yusaf, T. F., D. R. Buttsworth, K. H. Saleh, and B. F. Yousif. 2010. CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Applied Energy 87:1661–69. doi:10.1016/j.apenergy.2009.10.009.
  • Yusri, I. M., A. P. P. Abdul Majeed, R. Mamat, M. F. Ghazali, O. I. Awad, and W. H. Azmi. 2018. A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel. Renewable And Sustainable Energy Reviews 90:665–86. doi:10.1016/j.rser.2018.03.095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.