137
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of necking configuration of a methanol steam reformer on catalyst amount and reforming performance

, &
Pages 2863-2884 | Received 12 May 2019, Accepted 01 Jul 2019, Published online: 13 Aug 2019

References

  • Abernethy, R. B., R. P. Benedict, and R. B. Dowdell. 1985. ASME measurement uncertainty. Transactions of the ASME: Journal of Fluids Engineering 107:161–64.
  • Agrell, J., H. Birgersson, and M. Boutonnet. 2002. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation. Journal of Power Sources 106 (1–2):249–57. doi:10.1016/S0378-7753(01)01027-8.
  • Bejan, A. 1995. Convection heat transfer, 525. New York: John Wiley & Sons, Ltd.
  • Chein, R., Y. C. Chen, and J. N. Chung. 2012. Axial heat conduction and heat supply effects on methanol-steam reforming performance in micro-scale reformers. International Journal of Heat and Mass Transfer 55:3029–42. doi:10.1016/j.ijheatmasstransfer.2012.02.022.
  • Chen, W. H., T. C. Cheng, and C. I. Hung. 2011. Modeling and simulation of microwave double absorption on methanol steam reforming for hydrogen production. International Journal of Hydrogen Energy 36:333–44. doi:10.1016/j.ijhydene.2010.09.009.
  • Demirbas, A. 2007. Fuel cells as clean energy converters. Energy Sources, Part A 29 (2):185–91. doi:10.1080/009083190948694.
  • Ergun, S. 1952. Fluid flow through packed columns. Chemical Engineering Progress 48:89–94.
  • Fukahori, S., H. Koga, T. Kitaoka, M. Nakamura, and H. Wariishi. 2008. Steam reforming behavior of methanol using paper-structured catalysts: Experimental and computational fluid dynamic analysis. International Journal of Hydrogen Energy 33:1661–70. doi:10.1016/j.ijhydene.2007.12.063.
  • Karim, A., J. Bravo, and A. Datye. 2005. Nonisothermality in packed bed reactors for steam reforming of methanol. Applied Catalysis A: General 282 (1–2):101–09. doi:10.1016/j.apcata.2004.12.006.
  • Kershaw, D. 1978. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics 26:43–65. doi:10.1016/0021-9991(78)90098-0.
  • Kuo, J. K., and J. Y. Huang. 2019. Numerical and experimental investigation into clogging phenomenon in vaporizer coil of methanol steam reformers. International Journal of Hydrogen Energy 44 (28):14456–65. doi:10.1016/j.ijhydene.2019.01.142.
  • Lan, P., Q. L. Xu, L. H. Lan, D. Xie, S. P. Zhang, and Y. J. Yan. 2012. Steam reforming of model compounds and fast pyrolysis bio-oil on supported nickle metal catalysts for hydrogen production. Energy Sources, Part A 34 (21):2004–15. doi:10.1080/15567036.2010.492387.
  • Liu, Z. 2019. Experimental analysis of an integrated biomass gasification and PEM fuel cell system. Energy Sources, Part A 41 (3):185–91. doi:10.1080/15567036.2018.1518354.
  • Nehe, P., V. M. Reddy, and S. Kumar. 2015. Investigations on a new internally-heated tubular packed-bed methanol-steam reformer. International Journal of Hydrogen Energy 40:5715–25. doi:10.1016/j.ijhydene.2015.02.114.
  • Perng, S. W., and R. F. Horng. 2017. Numerical analysis of performance enhancement and non-isothermal reactant transport of a cylindrical methanol reformer wrapped with a porous sheath under steam reforming. International Journal of Hydrogen Energy 42 (38):24372–92. doi:10.1016/j.ijhydene.2017.07.170.
  • Perng, S. W., R. F. Horng, and H. W. Ku. 2013. Numerical predictions of design and operating parameters of reformer on the fuel conversion and CO production for the steam reforming of methanol. International Journal of Hydrogen Energy 38 (2):840–52. doi:10.1016/j.ijhydene.2012.10.070.
  • Perng, S. W., R. F. Horng, and H. W. Wu. 2017. Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis. Applied Energy 206:312–28. doi:10.1016/j.apenergy.2017.08.194.
  • Purnama, H., T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlogl, and R. Schomacker. 2004. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General 259:89–94. doi:10.1016/j.apcata.2003.09.013.
  • Ribeirinha, P., M. Abdollahzadeh, J. M. Sousa, M. Boaventura, and A. Mendes. 2017. Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Applied Energy 202:6–19. doi:10.1016/j.apenergy.2017.05.120.
  • Shahnazari, M. R., M. H. Moosavi, and A. Saberi. 2019. Numerical and experimental investigation of partial oxidation of methane in a porous media to achieve optimum hydrogen production. Energy Sources, Part A: 1588426. online. doi:10.1080/15567036.2019.
  • Tsui, Y. Y. 1991. A study of upstream weighted high-order differencing for approximation to flow convection. International Journal for Numerical Methods in Fluids 13:167–99. doi:10.1002/fld.1650130204.
  • Van der Vorst, H. 1992. BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear system. SIAM Journal on Scientific and Statistical Computing 13 (2):631–44. doi:10.1137/0913035.
  • Van Doormaal, J. P., and G. D. Raithby. 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer 7:147–63. doi:10.1080/01495728408961817.
  • White, F. M. 1991. Viscous fluid flow. 2nd ed. New York, NY: McGraw-Hill.
  • Wu, H. W. 2016. A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy 165:81–106. doi:10.1016/j.apenergy.2015.12.075.
  • Zhang, C., W. Zhou, M. M. Ehteshami, Y. Wang, and S. H. Chan. 2015. Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Conversion and Management 105:433–41. doi:10.1016/j.enconman.2015.08.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.