187
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation on combustion and emission characteristics of diesel and gasoline blends with exhaust gas recirculation

, , , , &
Pages 2885-2899 | Received 14 May 2019, Accepted 24 Jul 2019, Published online: 09 Aug 2019

References

  • Belgiorno, G., G. Di Blasio, S. Shamun, C. Beatrice, P. Tunestål, and M. Tunér. 2018. Performance and emissions of diesel-gasoline-ethanol blends in a light duty compression ignition engine. Fuel 217:78–90. doi:10.1016/j.fuel.2017.12.090.
  • Benajes, J., S. Molina, A. García, E. Belarte, and M. Vanvolsem. 2014. An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering 63 (1):66–76. doi:10.1016/j.applthermaleng.2013.10.052.
  • Borillo, G. C., Y. S. Tadano, A. F. L. Godoi, T. Pauliquevis, H. Sarmiento, D. Rempel, and R. H. Godoi. 2018. Polycyclic Aromatic Hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Science of the Total Environment 644:675–82. doi:10.1016/j.scitotenv.2018.07.007.
  • Chen, H., J. He, and H. Hua. 2017. Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel/biodiesel/polyoxymethylene dimethyl ethers blends. Energy & Fuels 31 (11):11710–22. doi:10.1021/acs.energyfuels.7b01898.
  • Chen, H., X. Su, J. He, and B. Xie. 2019a. Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends. Energy 167:297–311. doi:10.1016/j.energy.2018.10.199.
  • Chen, H., X. Su, J. Li, and X. Zhong. 2019b. Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine. Energy 171:981–99. doi:10.1016/j.energy.2019.01.089.
  • Chen, H., B. Xie, J. Ma, and Y. Chen. 2018. NOx emission of biodiesel compared to diesel: Higher or lower? Applied Thermal Engineering 137:584–93. doi:10.1016/j.applthermaleng.2018.04.022.
  • Chen, Z., C. Yao, A. Yao, Z. Dou, B. Wang, H. Wei, and J. Shi. 2017a. The impact of methanol injecting position on cylinder-to-cylinder variation in a diesel methanol dual fuel engine. Fuel 191:150–63. doi:10.1016/j.fuel.2016.11.072.
  • Damodharan, D., A. P. Sathiyagnanam, D. Rana, B. R. Kumar, and S. Saravanan. 2018. Combined influence of injection timing and EGR on combustion, performance and emissions of DI diesel engine fueled with neat waste plastic oil. Energy Conversion and Management 161:294–305. doi:10.1016/j.enconman.2018.01.045.
  • Du, J., W. Sun, L. Guo, S. Xiao, M. Tan, G. Li, and L. Fan. 2015. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends. Energy Conversion and Management 100:300–09. doi:10.1016/j.enconman.2015.04.076.
  • Feng, Z., C. Zhan, C. Tang, K. Yang, and Z. Huang. 2016. Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system. Energy 112:549–61. doi:10.1016/j.energy.2016.06.131.
  • Geng, P., C. Yao, Q. Wang, L. Wei, J. Liu, W. Pan, and G. Han. 2015. Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC. Applied Energy 148:449–55. doi:10.1016/j.apenergy.2015.03.030.
  • Han, D., C. Wang, Y. Duan, Z. Tian, and Z. Huang. 2014. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system. Energy 75:513–19. doi:10.1016/j.energy.2014.08.006.
  • Higgins, B., and D. Siebers. 2001. Measurement of the flame lift-off location on DI diesel sprays using OH chemiluminescence. SAE Transactions 110:739–53. doi:10.4271/2001-01-0918.
  • Hoekman, S. K., and C. Robbins. 2012. Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology 96:237–49. doi:10.1016/j.fuproc.2011.12.036.
  • Hossain, F. M., M. N. Nabi, and R. J. Brown. 2019. Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine. Energy Conversion and Management 186:220–28. doi:10.1016/j.enconman.2019.02.061.
  • Huang, H., R. Huang, X. Guo, M. Pan, W. Teng, Y. Chen, and Z. Li. 2019a. Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition. Applied Energy 250:185–97. doi:10.1016/j.apenergy.2019.05.028.
  • Huang, H., Z. Li, W. Teng, R. Huang, Q. Liu, and Y. Wang. 2019b. Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends. Applied Thermal Engineering 146:212–22. doi:10.1016/j.applthermaleng.2018.09.126.
  • Jeon, J., J. T. Lee, S. I. Kwon, and S. Park. 2016. Combustion performance, flame, and soot characteristics of gasoline–Diesel pre-blended fuel in an optical compression-ignition engine. Energy Conversion and Management 116:174–83. doi:10.1016/j.enconman.2016.03.003.
  • Khoobbakht, G., M. Karimi, and K. Kheiralipour. 2019. Effects of biodiesel-ethanol-diesel blends on the performance indicators of a diesel engine: A study by response surface modeling. Applied Thermal Engineering 148:1385–94. doi:10.1016/j.applthermaleng.2018.08.025.
  • Lee, S., J. Jeon, and S. Park. 2016. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel. Energy Conversion and Management 126:638–48. doi:10.1016/j.enconman.2016.08.046.
  • Li, G., C. Zhang, and Y. Li. 2016. Effects of diesel injection parameters on the rapid combustion and emissions of an HD common-rail diesel engine fueled with diesel-methanol dual-fuel. Applied Thermal Engineering 108:1214–25. doi:10.1016/j.applthermaleng.2016.08.029.
  • Li, J., W. M. Yang, H. An, and S. K. Chou. 2015. Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Applied Energy 160:777–83. doi:10.1016/j.apenergy.2014.08.105.
  • Li, X. R., W. Yang, L. M. Zhao, and F. S. Liu. 2017. The influence of pilot-main injection matching on DI diesel engine combustion using an endoscopic visualization system. Fuel 188:575–85. doi:10.1016/j.fuel.2016.10.069.
  • Ministry of Ecology and Environment of the People’s Republic of China. 2017. China vehicle environmental management annual report 2017. Beijing, China.
  • Mueller, C. J., W. J. Pitz, L. M. Pickett, G. C. Martin, D. L. Siebers, and C. K. Westbrook. 2003. Effects of oxygenates on soot processes in DI diesel engines: Experiments and numerical simulations. SAE Transactions 112:964–82. doi:10.4271/2003-01-179.
  • Okada, M., D. Shigetomi, M. Matsumoto, Y. Kobashi, and J. Senda. 2012. Effects of fuel composition on flame lift-off length and pollutant formation in dual-component fuel spray. COMODI 323–28. doi:10.1299/jmsesdm.2012.8.323.
  • Pan, W., C. Yao, G. Han, H. Wei, and Q. Wang. 2015. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine. Fuel 162:101–10. doi:10.1016/j.fuel.2015.08.073.
  • Shamun, S., G. Belgiorno, G. Di Blasio, C. Beatrice, M. Tunér, and P. Tunestål. 2018. Performance and emissions of diesel-biodiesel-ethanol blends in a light duty compression ignition engine. Applied Thermal Engineering 145:444–52. doi:10.1016/j.applthermaleng.2018.09.067.
  • Siebers, D., and B. Higgins. 2001. Flame lift-off on direct-injection diesel sprays under quiescent conditions. SAE Transactions 110:400–21. doi:10.4271/2001-01-0530.
  • Sun, X., R. T. Guo, S. W. Liu, J. Liu, W. G. Pan, X. Shi, H. Qin, Z. Wang, Z. Qiu, and X. Y. Liu. 2018. The promoted performance of CeO2 catalyst for NH3-SCR reaction by NH3 treatment. Applied Surface Science 462:187–93. doi:10.1016/j.apsusc.2018.08.114.
  • Tree, D. R., and K. I. Svensson. 2007. Soot processes in compression ignition engines. Progress in Energy and Combustion Science 33 (3):272–309. doi:10.1016/j.pecs.2006.03.002.
  • Verma, S., L. M. Das, S. C. Kaushik, and S. S. Bhatti. 2019. The effects of compression ratio and EGR on the performance and emission characteristics of diesel-biogas dual fuel engine. Applied Thermal Engineering 150:1090–103. doi:10.1016/j.applthermaleng.2019.01.080.
  • Wei, H., C. Yao, W. Pan, G. Han, Z. Dou, T. Wu, and J. Shi. 2017. Experimental investigations of the effects of pilot injection on combustion and gaseous emission characteristics of diesel/methanol dual fuel engine. Fuel 188:427–41. doi:10.1016/j.fuel.2016.10.056.
  • Wu, T., A. Yao, C. Yao, W. Pan, H. Wei, C. Chen, and J. Gao. 2018. Effect of diesel late-injection on combustion and emissions characteristics of diesel/methanol dual fuel engine. Fuel 233:317–27. doi:10.1016/j.fuel.2018.06.063.
  • Wu, Z., T. Bao, Q. Zhang, J. Deng, and L. Li. 2015. Simulation study on spray combustion mechanism of diesel–Gasoline blend fuels. Fuel 143:301–07. doi:10.1016/j.fuel.2014.11.055.
  • Wünning, J. A., and J. G. Wünning. 1997. Flameless oxidation to reduce thermal NO-formation. Progress in Energy and Combustion Science 23 (1):81–94. doi:10.1016/S0360-1285(97)00006-3.
  • Yu, C., J. X. Wang, Z. Wang, and S. J. Shuai. 2013. Comparative study on gasoline homogeneous charge induced ignition (HCII) by diesel and gasoline/diesel blend fuels (GDBF) combustion. Fuel 106:470–77. doi:10.1016/j.fuel.2012.10.068.
  • Zhao, Y., B. Choi, and D. Kim. 2017. Effects of Ce and Nb additives on the de-NOx performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles. Chemical Engineering Science 164:258–69. doi:10.1016/j.ces.2017.02.009.
  • Zheng, L., X. Ma, Z. Wang, and J. Wang. 2015a. An optical study on liquid-phase penetration, flame lift-off location and soot volume fraction distribution of gasoline–Diesel blends in a constant volume vessel. Fuel 139:365–73. doi:10.1016/j.fuel.2014.09.009.
  • Zheng, Z., L. Yue, H. Liu, Y. Zhu, X. Zhong, and M. Yao. 2015b. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel. Energy Conversion and Management 90:1–11. doi:10.1016/j.enconman.2014.11.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.