117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of different synthesis parameters on physical and structural properties of SBA-15

, , &
Pages 3044-3054 | Received 17 Jun 2019, Accepted 21 Jul 2019, Published online: 20 Aug 2019

References

  • Abdallah, N. H., M. Schlumpberger, D. A. Gaffney, J. P. Hanrahan, J. M. Tobin, and E. Magner. 2014. Comparison of mesoporous silicate supports for the immobilisation and activity of cytochrome c and lipase. Journal of Molecular Catalysis B: Enzymatic 108:82–88. doi:10.1016/j.molcatb.2014.06.007.
  • Ahern, R. J., J. P. Hanrahan, J. M. Tobin, K. B. Ryan, and A. M. Crean. 2013. Comparison of fenofibrate–mesoporous silica drug-loading processes for enhanced drug delivery. European Journal of Pharmaceutical Sciences 50:400–09. doi:10.1016/j.ejps.2013.08.026.
  • Ali, M. F., and S. Abbas. 2006. A review of methods for the demetallization of residual fuel oils. Fuel Processing Technology 87:573–84. doi:10.1016/j.fuproc.2006.03.001.
  • Berube, F., and S. Kaliaguine. 2008. Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous and Mesoporous Material 115:469–79. doi:10.1016/j.micromeso.2008.02.028.
  • Boahene, P. E., K. K. Soni, A. K. Dalai, and J. Adjaye. 2011. Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Applied Catalysis A: General 402:31–40. doi:10.1016/j.apcata.2011.05.005.
  • Burke, A. M., J. P. Hanrahan, D. A. Healy, J. R. Sodeau, J. D. Holmes, and M. A. Morris. 2009. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment. Journal of Hazardous Materials 164:229–34. doi:10.1016/j.jhazmat.2008.07.146.
  • Cao, L., T. Man, and M. Kruk. 2009. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chemistry of Materials 21:1144–53. doi:10.1021/cm8012733.
  • Delaney, P., C. McManamon, J. P. Hanrahan, M. P. Copley, J. D. Holmes, and M. A. Morris. 2011. Development of chemically engineered porous metal oxides for phosphate removal. Journal of Hazardous Materials 185:382–91. doi:10.1016/j.jhazmat.2010.08.128.
  • Duan, Y., Y. Zhou, X. Sheng, Y. Zhang, Z. Sh., and Z. Zhang. 2012. Influence of alumina binder content on catalytic properties of PtSnNa/AlSBA-15 catalysts. Microporous and Mesoporous Materials 161:33–39. doi:10.1016/j.micromeso.2012.05.016.
  • Fisher, R. A., and F. Yates. 1984. Statistical tables. New York: Oliver and Boyd.
  • Fluvio, P. F., S. Pikus, and M. Jaroniec. 2005a. Short-time synthesis of SBA-15 using various silica sources. Journal of Colloid and Interface Science 287:717–20. doi:10.1016/j.jcis.2005.02.045.
  • Fluvio, P. F., S. Pikus, and M. Jaroniec. 2005b. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. Journal of Materials Chemistry 15:5049–53. doi:10.1039/B511346F.
  • Galarneau, A., H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, and F. Fajulaa. 2003. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry 27:73–79. doi:10.1039/B207378C.
  • Galarneau, A., H. Cambon, F. D. Renzo, and F. Fajula. 2001. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17:8328–35. doi:10.1021/la0105477.
  • Huang, T., J. Huang, P. Ji, and W. Huang. 2015b. The effects of MgO on the stability of an Ni-Mo/SBA-15 catalyst for carbon dioxide reforming of methane. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37:111–17. doi:10.1080/15567036.2011.580324.
  • Huang, T., W. Huang, J. Huang, and P. Ji. 2015a. High stability of Ni-Co/SBA-15 catalysts for CH4 reforming with CO2. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37:510–17. doi:10.1080/15567036.2011.585387.
  • Huirache-Acuna, R., R. Nava, C. L. Peza-Ledesma, J. Lara-Romero, G. Alonso-Núñez, B. Pawelec, and E. M. Rivera-Muñoz. 2013. SBA-15 mesoporous silica as catalytic support for hydrodesulfurization catalysts – Review. Materials 6:4139–67. doi:10.3390/ma6094139.
  • Jaroszewska, K., A. Masalska, D. Czycz, and J. Grzechowiak. 2017. Activity of shaped Pt/AlSBA-15 catalysts in n-hexadecane hydroisomerization. Fuel Processing Technology 167:1–10. doi:10.1016/j.fuproc.2017.06.012.
  • Johansson, E. M., J. M. Crdoba, and M. Oden. 2010. The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15. Microporous and Mesoporous Materials 133:66–74. doi:10.1016/j.micromeso.2010.04.016.
  • Kempthorne, O. 1952. Design and analysis of experiments. New York: John Wiley and Sons.
  • Kipemboi, P., A. Fogden, V. Alfredsson, and K. Flodstrom. 2001. Triblock copolymers as templates in mesoporous silica formation: Structural dependence on polymer chain length and synthesis temperature. Langmuir 17:5398–402. doi:10.1021/la001715i.
  • Klimova, T., A. Esquivel, J. Reyes, M. Rubio, X. Bokhimi, and J. Aracil. 2006. Factorial design for the evaluation of the influence of synthesis parameters upon the textural and structural properties of SBA-15 ordered materials. Microporous and Mesoporous Materials 93:331–43. doi:10.1016/j.micromeso.2006.03.016.
  • Kruk, M., and L. Cao. 2007. Pore size tailoring in large-pore SBA-15 silica synthesized in the presence of hexane. Langmuir 23:7247–54. doi:10.1021/la0702178.
  • Lysenko, S. V., I. O. Kryukov, O. A. Sarkisov, A. B. Abikenova, S. V. Baranova, V. A. Ostroumova, S. V. Kardashev, A. B. Kulikov, and E. A. Karakhanov. 2011. Mesoporous aluminosilicates as components of gas oil cracking and higher-alkane hydroisomerization catalysts. Petroleum Chemistry 51:151–56. doi:10.1134/S0965544111030091.
  • Mahdavi, V., and A. Monajemi. 2013. Statistical optimization for oxidation of ethyl benzene over Co-Mn/SBA-15 catalyst by Box-Behnken design. Korean Journal of Chemical Engineering 30:2178–85. doi:10.1007/s11814-013-0182-9.
  • Morales-Ortuno, J. C., R. A. Ortega-Domínguez, P. Hernández-Hipólito, X. Bokhimi, and T. E. Klimova. 2016. HDS performance of NiMo catalysts supported on nanostructuredmaterials containing titania. Catalysis Today 271:127–39. doi:10.1016/j.cattod.2015.07.028.
  • Nagarajan, R., M. Barry, and E. Ruckenstein. 1986. Unusual selectivity in solubilization by block copolymer micelles. Langmuir 2:210–15. doi:10.1021/la00068a017.
  • Perez-Beltran, S., P. B. Balbuena, and G. E. Ramirez-Caballero. 2016. Surface structure and acidity properties of mesoporous silica SBA-15 modified with aluminum and titanium: First-principles calculations. The Journal of Physical Chemistry C 120:18105–14. doi:10.1021/acs.jpcc.6b05630.
  • Plackett, R. L., and J. P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33:305–25. doi:10.1093/biomet/33.4.305.
  • Restrepo-Garcia, J. R., V. G. Baldovino-Medrano, and S. A. Giraldo. 2016. Improving the selectivity in hydrocracking of phenanthrene over mesoporous Al-SBA-15 based Fe–W catalysts by enhancing mesoporosity and acidity. Applied Catalysis A: General 510:98–109. doi:10.1016/j.apcata.2015.10.051.
  • Ruthstein, S., J. Schmidt, E. Kesselman, Y. Talmon, and D. Goldfarb. 2006. Resolving intermediate solution structures during the formation of mesoporous SBA-15. Journal of the American Chemical Society 128:3366–74. doi:10.1021/ja0559911.
  • Sabri, A. A., T. M. Albayati, and R. A. Alazawi. 2015. Synthesis of ordered mesoporous SBA-15 and its adsorption of methylene blue. Korean Journal of Chemical Engineering 32:1835–41. doi:10.1007/s11814-014-0390-y.
  • Schmidt-Winkel, P., W. W. Lukens, D. Zhao, P. Yang, B. F. Chmelka, and G. D. Stucky. 1999. Meso-cellular siliceous foams with uniformly sized cells and windows. Journal of the American Chemical Society 121:254–55. doi:10.1021/ja983218i.
  • Shirokopoyas, S. I., S. V. Baranova, A. L. Maksimov, S. V. Kardashev, A. B. Kulikov, E. R. Naranov, V. A. Vinokurov, S. V. Lysensko, and E. A. Karakhanov. 2014. Hydrogenation of aromatic hydrocarbons in the presence of dibenzothiophene over platinum-palladium catalysts based on Al-SBA-15 aluminosilicates. Petroleum Chemistry 54:94–99. doi:10.1134/S0965544114020108.
  • Sun, J., D. Ma, H. Zhang, C. Wang, X. Bao, D. S. Su, A. Klein-Hoffmann, G. Weinberg, and S. Mann. 2006. Phase evolution in the alkane–P123–water–TEOS quadru-component system: A feasible route to different complex mesostructured materials. Journal of Materials Chemistry 16:1507–10. doi:10.1039/B602374F.
  • Thirugnanasambandham, K. 2018. Application of Plackett–Burman design to screen the effective process parameters for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:: 453–458. doi:10.1080/15567036.2017.1423416.
  • Vunain, E., R. Malgas-Enus, K. Jalama, and R. Meijboom. 2013. The effect of recrystallization time on pore size and surface area of mesoporous SBA-15. Journal of Sol-Gel Science and Technology 68:270–77. doi:10.1007/s10971-013-3163-x.
  • Wang, T., Q. Dai, and F. Yan. 2017. Effect of acid sites on catalytic destruction of trichloroethylene over solid acid catalysts. Korean Journal of Chemical Engineering 34:664–71. doi:10.1007/s11814-016-0299-8.
  • Wei, Y., Y. Li, Y. Tan, J. Zhou, Z. Wu, and Y. Liu. 2015. A facile route for one-pot synthesis of short-channeled bimetallic Zr–Al–SBA-15. Materials Letters 141:145–48. doi:10.1016/j.matlet.2014.11.066.
  • Xing, S., P. Lv, J. Fu, J. Wang, P. Fan, L. Yang, and Z. Yuan. 2017. Direct synthesis and characterization of pore-broadened Al-SBA-15. Microporous and Mesoporous Materials 239:316–27. doi:10.1016/j.micromeso.2016.10.018.
  • Xu, X., Y. Sun, L. Zh., X. Chen, and E. Jiang. 2017. Hydrogen from pyroligneous acid via modified bimetal Al-SBA-15 catalysts. Applied Catalysis A: General 547:75–85. doi:10.1016/j.apcata.2017.08.030.
  • Yilmaz, M. S., and S. Piskin. 2015. Evaluation of novel synthesis of ordered SBA-15 mesoporous silica from gold mine tailings slurry by experimental design. Journal of the Taiwan Institute of Chemical Engineers 46:176–82. doi:10.1016/j.jtice.2014.09.011.
  • Yoon, S., W. C. Choi, Y. Park, H. Y. Kim, and C. W. Lee. 2010. Catalytic hydrocracking of bitumen at mild experimental condition. Korean Journal of Chemical Engineering 27:62–65. doi:10.1007/s11814-009-0316-2.
  • Zhang, H., J. Sun, D. Ma, G. Weinberg, D. S. Su, and X. Bao. 2006. Engineered complex emulsion system: Toward modulating the pore length and morphological architecture of mesoporous silicas. The Journal of Physical Chemistry B 110:25908–15. doi:10.1021/jp065760w.
  • Zhang, X., L. Zhang, H. Peng, X. You, C. Peng, X. Xu, W. Liu, X. Fang, Z. Wang, N. Zhang, et al. 2018. Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming. Applied Catalysis B: Environmental 224:488–99. doi:10.1016/j.apcatb.2017.11.001.
  • Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky. 1998a. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–52. doi:10.1126/science.279.5350.548.
  • Zhao, D., Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky. 1998b. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 120:6024–36. doi:10.1021/ja974025i.
  • Zukal, A., J. Mayerova, and J. Cejka. 2010. Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Physical Chemistry Chemical Physics 20:5240–47. doi:10.1039/b924938a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.