182
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the mechanism of enhanced oil recovery by air assisted cyclic steam stimulation process in extra-heavy oil reservoirs

, , &
Pages 4902-4916 | Received 20 Nov 2018, Accepted 09 Aug 2019, Published online: 22 Aug 2019

References

  • Bao, Y., J. Wang, and I. D. Gates. 2016. On the physics of cyclic steam stimulation. Energy 115:969–85. doi:10.1016/j.energy.2016.09.031.
  • Chen, Y. L., Y. Q. Wang, and C. Wu. 2008. Laboratory experiments and field tests of an amphiphilic metallic chelate for catalytic aquathermolysis of heavy oil. Energy & Fuels 22 (3):1501–08. doi:10.1021/ef8000136.
  • Chen, Z., W. Lei, Q. Duan, Z. Liang, and S. Ren. 2013. High-pressure air injection for improved oil recovery: low-temperature oxidation models and thermal effect. Energy & Fuels 27 (2):780–86. doi:10.1021/ef301877a.
  • Clark, P. D., J. B. Hyne, and J. D. Tyrer. 1984. Chemistry of organosulfur compound type occurring in heavy oil sands: 3. Reaction of thiophene and tetrahydrothiophene with vanadyl and nickel salts. Fuel 63:1645–49.
  • Clark, P. D., N. I. Dowling, K. L. Lesage, and J. B. Hyne. 1987. Chemistry of organosulphur compound types occurring in heavy oil sands: 5. reaction of thiophene and tetrahydrothiophene with aqueous group viiib metal species at high temperature. Fuel 66 (12):1699–702. doi:10.1016/0016-2361(87)90366-8.
  • Fan, H. F., Z. B. Li, Z. Liang, and L. G. Zhong. 2007. Experimental study on using ionic liquids to upgrade heavy oil. Journal of Fuel Chemistry and Technology 35 (1):32–35. doi:10.1016/S1872-5813(07)60009-7.
  • Fan, J., X. F. Li, and T. J. Qin. 2016. Feasibility study on steam and gas push with dual horizontal wells in a moderate-depth heavy oil reservoir. Journal of Engineering and Science and Technology Review 9 (1):151–58. doi:10.25103/jestr.
  • Huang, S. J., P. Hu, and Q. Li. 2012. Study on heating zone and producing zone of cyclic steam stimulation with horizontal well in heavy oil reservoir. Advanced Materials Research 594–597:2438–41. doi:10.4028/scientific.net/AMR.594-597.
  • Khansari, Z., I. D. Gates, and N. Mahinpey. 2014. Low-temperature oxidation of lloydminster heavy oil: kinetic study and product sequence estimation. Fuel 115 (1):534–38. doi:10.1016/j.fuel.2013.07.071.
  • Khansari, Z., P. Kapadia, N. Mahinpey, and I. D. Gates. 2014. A new reaction model for low temperature oxidation of heavy oil: experiments and numerical modeling. Energy 64 (1):419–28. doi:10.1016/j.energy.2013.11.024.
  • Li, Y., Y. Chen, W. Pu, H. Gao, and B. Bai. 2017a. Experimental investigation into the oxidative characteristics of Tahe heavy crude oil. Fuel 209:194–202. doi:10.1016/j.fuel.2017.07.029.
  • Li, Y. B., Y. F. Chen, W. F. Pu, H. Dong, H. Gao, F. Y. Jin, and B. Wei. 2017b. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods. Journal of Industrial & Engineering Chemistry 48:249–58. doi:10.1016/j.jiec.2017.01.017.
  • Li, Z., T. Lu, L. Tao, B. Li, J. Zhang, and J. Li. 2011. CO2 and viscosity breaker assisted steam huff and puff technology for horizontal wells in a super-heavy oil reservoir. Petroleum Exploration & Development 38 (5):600–05. doi:10.1016/S1876-3804(11)60059-1.
  • Liu, D., Q. Song, J. Tang, R. Zheng, and Q. Yao. 2016. Interaction between saturates, aromatics and resins during pyrolysis and oxidation of heavy oil. Journal of Petroleum Science & Engineering 154: 543–550.
  • Liu, H. Q. 2013. Thermal Recovery Principle and Method. Beijing: Petroleum Industry Press.
  • Mohsenzadeh, A., M. Escrochi, M. V. Afraz, G. Karimi, Y. Al-Wahaibi, and S. Ayatollahi. 2016. Non-hydrocarbon gas injection followed by steam–gas co-injection for heavy oil recovery enhancement from fractured carbonate reservoirs. Journal of Petroleum Science & Engineering 144:121–30. doi:10.1016/j.petrol.2016.03.003.
  • Pu, W. F., X. L. Gong, Y. F. Chen, X. L. Liu, J. Hui, C. Guo, and M. A. Varfolomeev. 2019. Oxidation kinetic evaluation of the low temperature oxidized products of Tahe heavy oil characterized by the distributed activation energy model. Journal of Petroleum Science & Engineering 181: doi: 10.1016/j.petrol.2019.06.019.
  • Rong, G. Y., L. S. Qi, S. D. Huang, and L. X Ling. 2003. Study on n_2 and solvent assisted steam stimulation in a super-heavy oil reservoir. Petroleum Exploration & Development 30 (2):73–75.
  • Siskin, M., and A. R. Kataritzky. 1991. Reactivity of organic compounds in hot water: Geochemical and technological implications. Science 254 (5029):231–37. doi:10.1126/science.254.5029.231.
  • Song, C., and D. Yang. 2017. Experimental and numerical evaluation of co 2, huff-n-puff processes in bakken formation. Fuel 190:145–62. doi:10.1016/j.fuel.2016.11.041.
  • Steve, K., and B. Gary. 2006. Flue gas injection for heavy oil recovery. US7341102 B2
  • Sun, F., Y. Yao, and X. Li. 2018. The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy 143:995–1005. doi:10.1016/j.energy.2017.11.028.
  • Sun, F., Y. Yao, X. Li, G. Li, Q. Liu, S. Han, and Y. Zhou. 2018. Effect of friction work on key parameters of steam at different state in toe-point injection horizontal wellbores. Journal of Petroleum Science & Engineering, 164 655–62. doi:10.1016/j.petrol.2018.01.062.
  • Wang, C., P. C. Liu, F. S. Wang, B. Atadurdyyev, and M. Ovluyagulyyev. 2018a. Experimental study on effects of CO2 and improving oil recovery for CO2assisted SAGD in super-heavy-oil reservoirs. Journal of Petroleum Science & Engineering 165:1073–80. doi:10.1016/j.petrol.2018.02.058.
  • Wang, J., L. Liu, L. Zhang, and Z. Li. 2014. Aquathermolysis of heavy crude oil with amphiphilic nickel and iron catalysts. Energy & Fuels 28 (12):7440–47. doi:10.1021/ef502134p.
  • Wang, Y., L. Zhang, J. Deng, Y. Wang, S. Ren, and C. Hu. 2017. An innovative air assisted cyclic steam stimulation technique for enhanced heavy oil recovery. Journal of Petroleum Science and Engineering 151:254–63. doi:10.1016/j.petrol.2017.01.020.
  • Wang, Y., S. Ren, L. Zhang, and C. Hu. 2018b. Energy efficiency and greenhouse gas emissions of current steam injection process and promising steam based techniques for heavy oil reservoirs. Journal of Petroleum Science and Engineering 166:842–49. doi:10.1016/j.petrol.2018.03.094.
  • Wang, Y., S. Ren, L. Zhang, X. Peng, S. Pei, G. Cui, and Y. Liu. 2018c. Numerical study of air assisted cyclic steam stimulation process for heavy oil reservoirs: recovery performance and energy efficiency analysis. Fuel 211:471–83. doi:10.1016/j.fuel.2017.09.079.
  • Wu, C., G. L. Lei, C. J. Yao, K. J. Sun, P.-Y. Gai, and Y.-B. CAO. 2010. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst. Journal of Fuel Chemistry and Technology 38 (6):684–90. doi:10.1016/S1872-5813(11)60004-2.
  • Xu, A., L. Mu, Z. Fan, X. Wu, L. Zhao, B. Bo, and T. Xu. 2013. Mechanism of heavy oil recovery by cyclic superheated steam stimulation. Journal of Petroleum Science & Engineering 111 (21):197–207. doi:10.1016/j.petrol.2013.09.007.
  • Yuan, Z., P. Liu, S. Zhang, X. Li, L. Shi, and R. Jin. 2018. Experimental study and numerical simulation of nitrogen-assisted SAGD in developing heavy oil reservoirs. Journal of Petroleum Science & Engineering 162:325–32. doi:10.1016/j.petrol.2017.12.064.
  • Zhang, S. J. 2012. Experimental Study on Oil Production by Air Injection for Extra Heavy Oil Reservoirs and Its Field Application. Special Oil & Gas Reservoirs 19 (5):43–145.
  • Zhao, S., W. F. Pu, M. A. Varfolomeev, C. D. Yuan, J. Zhang, X. Han, Y. Yang, X. Peng, and J. Wu. 2018. Comprehensive investigations into low temperature oxidation of heavy crude oil. Journal of Petroleum Science & Engineering 171:835–42. doi:10.1016/j.petrol.2018.08.027.
  • Zheng, Y. C., Q. Chen, R. F. Wang, T. J. Su, and C. X. Zhao. 2009. Effect of catalytic oxidation system on composition and viscosity of heavy oil. Chemical Engineering of Oil & Gas 38 (1):34–38.
  • Zhong, L. G., S. J. Zhang, D. Lu, J. Z. Guan, and Z. Y. Zhang. 2015. Research on EOR principles of air assisted CSS. Journal of Northeast Petroleum University 39 (2):107–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.