293
Views
2
CrossRef citations to date
0
Altmetric
Research Article

On the difference of graphitization behavior between vitrinite- and inertinite-rich anthracites during heat treatment

, , &
Pages 4991-5003 | Received 21 May 2019, Accepted 11 Aug 2019, Published online: 22 Aug 2019

References

  • Atria, J. V., F. Rusinko, and H. H. Schobert. 2002. Structural ordering of Pennsylvania anthracites on heat treatment to 2000–2900°C. Energy & Fuels 16:1343–47. doi:10.1021/ef010295h.
  • Beyssac, O., B. Goffé, J. P Petitet, E. Froigneux, M. Moreau, and J. Rouzaud. 2003. On the characterization of disordered and heterogeneous carbonaceous materials by raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59:2267–76. doi:10.1016/S1386-1425(03)00070-2.
  • Biscoe, J., and B. Warren. 1942. AnX-ray study of carbon blacks. Journal of Applied Physics 13:364–71. doi:10.1063/1.1714879.
  • Bishop, M., and D. L. Ward. 1958. The direct determination of mineral matter in coal. Fuel 37:191–200.
  • Boehman, A. L., J. Song, and M. Alam. 2005. Impact of biodiesel blending on diesel soot and the regeneration of particulate filters. Energy & Fuels 19:1857–64. doi:10.1021/ef0500585.
  • Buseck, P. R., and B. J. Huang. 1985. Conversion of carbonaceous material to graphite during metamorphism. Geochimica et cosmochimica acta 49:2003–16. doi:10.1016/0016-7037(85)90059-6.
  • Bustin, R. M., J. N. Rouzaud, and J. V. Ross. 1995. Natural graphitization of anthracite: Experimental considerations. Carbon 33:679–91. doi:10.1016/0008-6223(94)00155-S.
  • Cao, D. Y., H. Zhang, Y. J. Dong, and C. W. Yang. 2017. Nanoscale microscopic features and evolution sequence of coal-based graphite. Journal of Nanoscience and Nanotechnology 17:6276–83. doi:10.1166/jnn.2017.14403.
  • Chabalala, V. P., N. Wagner, and S. Potgieter-Vermaak. 2011. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1. Fuel Processing Technology 92:750–56. doi:10.1016/j.fuproc.2010.09.006.
  • Diessel, C. F. K., R. N. Brothers, and P. M. Black. 1978. Coalification and graphitization in high-pressure schists in New Caledonia. Contributions to Mineralogy & Petrology 68:63–78. doi:10.1007/BF00375447.
  • Duber, P. S., . S., and B. Kwiecinska. 2002. The study of textural and structural transformations of carbonized anthracites. Fuel Processing Technology 77:173–80.
  • Fischbach, D. B. 1970. The graphitization process. Tanso 115–20. doi:10.7209/tanso.1970.115.
  • Franklin, R. 1956. Homogeneous and heterogeneous graphitization of carbon. Nature 177:239. doi:10.1038/177239a0.
  • Franklin, R. E. 1951. Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society A 209:196–218. doi:10.1098/rspa.1951.0197.
  • Gaddam, C. K., C. H. Huang, and R. L. Vande Wal. 2016. Quantification of nano-scale carbon structure by HRTEM and lattice fringe analysis. Pattern Recognition Letters 76:9:0–97.
  • González, D., M. A. Montes-Morán, I. Suárez-Ruiz, and A. B. Garcia. 2004. Structural characterization of graphite materials prepared from anthracites of different characteristics: A comparative analysis. Energy & Fuels 18:365–70.
  • González, D., M. A. Montes-Moran, and A. B. García. 2005. Influence of inherent coal mineral matter on the structural characteristics of graphite materials prepared from anthracites. Energy & Fuels 19:263–69. doi:10.1021/ef049893x.
  • González, D., M. A. Montes-Morán, and A. B. Garcia. 2003. Graphite materials prepared from an anthracite: A structural characterization. Energy & Fuels 17:1324–29. doi:10.1021/ef0300491.
  • González, D., M. A. Montes-Morán, R. J. Young, and A. B. Garcia. 2002. Effect of temperature on the graphitization process of a semi anthracite. Fuel Processing Technology 79:245–50. doi:10.1016/S0378-3820(02)00181-9.
  • Hinrichs, R., M. T. Brown, M. A. Z. Vasconcellos, M. V. Abrashev, and W. Kalkreuth. 2014. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. International Journal of Coal Geology 136:52–58. doi:10.1016/j.coal.2014.10.013.
  • Inagaki, M., A. Oberlin, and T. Noda. 1975. Structural changes of graphitizing carbons during graphitization-review. Tanso 81:68–72. doi:10.7209/tanso.1975.68.
  • Krˇibek, B., J. Hrabal, P. Landais, and J. Hladikova. 1994. The association of poorly ordered graphite, coke and bitumens in green schistfacies rocks of the Ponikla´group, Lugicum, Czech Republik: The result of graphitization of various types of carbonaceous matter. Journal of Metamorphic Geology 12:493–503. doi:10.1111/jmg.1994.12.issue-4.
  • Kwiecinska, B., I. Suarez-Ruiz, C. Paluszkiewicz, and S. Rodrigues. 2010. Raman spectroscopy of selected carbonaceous samples. International Journal of Coal Geology 84:206–12. doi:10.1016/j.coal.2010.08.010.
  • Li, K., S. M. Rimmer, and Q. F. Liu. 2018. Geochemical and petrographic analysis of graphitized coals from Central Hunan, China. International Journal of Coal Geology 195:267–79. doi:10.1016/j.coal.2018.06.009.
  • Liu, X. G., Y. Z. Yang, X. Lin, B. S. Xu, and Y. Zhang. 2006. Deoiled asphalt as carbon source for preparation of various carbon materials by chemical vapor deposition. Fuel Processing Technology 87:919–25. doi:10.1016/j.fuproc.2006.06.007.
  • López-Honorato, E., J. Boshoven, P. J. Meadows, D. Manara, P. Guillermier, S. Jühe, P. Xiao, and J. Somers. 2012. Characterization of the anisotropy of pyrolytic carbon coatings and the graphite matrix in fuel compacts by two modulator generalised ellipsometry and selected area electron diffraction. Carbon 50:680–88. doi:10.1016/j.carbon.2011.09.027.
  • Monthioux, M. 2002. Structure, texture and thermal behavior of polyaromatic solids. In: Setton R, Bernier R, Lefrant S, editors. Carbon molecules and materials, 127–77. London, Taylor and Francis.
  • Morga, R. 2011. Micro-Raman spectroscopy of carbonized semifusinite and fusinite. International Journal of Coal Geology 87::253–67. doi:10.1016/j.coal.2011.06.016.
  • Nyathi., M. S., C. B. Clifford, and H. H. Schobert. 2013. Characterization of graphitic materials prepared from different Pennsylvania anthracites. Fuel 89:244–50. doi:10.1016/j.fuel.2012.04.003.
  • Oberlin, A., and S. Bonnamy. 2013. A realistic approach to disordered carbons. In: Radovic L.R. Chemistry and physics of carbon, Vol. 31, 1–84. Boca Raton, Taylor & Francis.
  • Oberlin, A., S. Bonnamy, and K. Oshida. 2006. Landmarks for graphitization. Tanso 224:281–98. doi:10.7209/tanso.2006.281.
  • Oberlin, A., and G. Terriere. 1975. Graphitization studies of anthracites by high resolution electron microscopy. Carbon 13:367–76. doi:10.1016/0008-6223(75)90004-4.
  • Okabe, K., S. Shiraishi, and A. Oya. 2004. Mechanism of heterogeneous graphitization observed in phenolic resin-derived thin carbon fibers heated at 3000°C. Carbon 42:667–69. doi:10.1016/j.carbon.2003.11.018.
  • Ouzilleau, P., A. E. Gheribi, and P. Chartrand. 2016. The graphitization temperature threshold analyzed through a second-order structural transformation. Carbon 109:896–908. doi:10.1016/j.carbon.2016.08.041.
  • Pappano, P. J., and H. H. Schobert. 2009. Effect of natural mineral inclusions on the graphitizability of a Pennsylvania anthracite. Energy & Fuels 23:422–28. doi:10.1021/ef800515r.
  • Pasteris, J. D., and B. Wopenka. 1991. Raman spectra of graphite as indicators of degree of metamorphism. Canadian Mineralogist 29:1–9.
  • Pierson, H. O. 1993. Molded graphite: Processing, properties and application. In: Pierson, H.O. Handbook of carbon, graphite, diamond and fullerenes, 87–121. New Jersey: Noyes Publications.
  • Potgieter-Vermaak, S., N. Maledi, N. Wagner, J. H. P. V. Heerden, R. V. Grieken, and J. H. Potgieter. 2011. Raman spectroscopy for the analysis of coal: A review. Journal of Raman Spectroscopy 42:123–29. doi:10.1002/jrs.v42.2.
  • Presswood, S. M., S. M. Rimmer, K. B. Anderson, and J. Filiberto. 2016. Geochemical and petrographic alteration of rapidly heated coals from the Herrin (no. 6) coal seam, Illinois Basin. International Journal of Coal Geology 165:243–56. doi:10.1016/j.coal.2016.08.022.
  • Quirico, E., J. N. Rouzaud, L. Bonal, and G. Montagnac. 2005. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 61:2368–77. doi:10.1016/j.saa.2005.02.015.
  • Rantitsch, G., W. Grogger, C. Teichert, F. Ebner, C. Hofer, and E. M. Maurer. 2004. Conversion of carbonaceous material to graphite within the greywacke zone of the eastern Alps. International Journal of Earth Sciences 93:959–73. doi:10.1007/s00531-004-0436-1.
  • Rantitsch, G., W. Lammerer, E. Fisslthaler, S. Mitsche, and H. Kaltenbock. 2016. On the discrimination of semi-graphite and graphite by Raman spectroscopy. International Journal of Coal Geology 159:48–56. doi:10.1016/j.coal.2016.04.001.
  • Roberts, M. J., R. C. Everson, H. W. J. P. Neomagus, D. V. Niekerk, J. P. Mathews, and D. J. Branken. 2015. Influence of maceral composition on the structure, properties and behavior of chars derived from South African coals. Fuel 142:9–20. doi:10.1016/j.fuel.2014.10.033.
  • Rodrigues, S., I. Suárez-Ruiz, M. Marques, I. Camean, and D. Flores. 2011. Microstructural evolution of high temperature treated anthracites of different rank. International Journal of Coal Geology 87:204–11. doi:10.1016/j.coal.2011.06.009.
  • Ross, J. V., and R. M. Bustin. 1990. The role of strain energy in creep graphitization of anthracite. Nature 343:58–60. doi:10.1038/343058a0.
  • Rouzaud, J. N., and C. Clinard. 2002. Quantitative high-resolution transmission electron microscopy: A promising tool for carbon materials characterization. Fuel Processing Technology 77–78:229–35. doi:10.1016/S0378-3820(02)00053-X.
  • Schwan, J., S. Ulrich, V. Batori, H. P. Ehrhardt, and S. R. P. Silva. 1996. Raman spectroscopy on amorphous carbon films. Journal of Applied Physics 80:440–47. doi:10.1063/1.362745.
  • Sharma, A., T. Kyotani, and A. Tomita. 1999. A new quantitative approach for micro-structural analysis of coal char using HRTEM images. Fuel 78:1203–12. doi:10.1016/S0016-2361(99)00046-0.
  • Sonibare, O. O., T. Haeger, and S. F. Foley. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35:5347–53. doi:10.1016/j.energy.2010.07.025.
  • Su, X. B., Q. Si, and J. Song. 2016. Characteristics of coal Raman spectrum. Journal of China Coal Society 41:1197–202.
  • Suárez-Ruiz, I., and A. B. García. 2007. Optical parameters as a tool to study the microstructural evolution of carbonized anthracites during high-temperature treatment. Energy & Fuels 21:2935–41. doi:10.1021/ef700221r.
  • Rodrigues, S., I. Suárez-Ruiz, M. Marques, D. Flores, I. Camean, and A. B. Garcia. 2011. Development of graphite-like particles from the high temperature treatment of carbonized anthracites. International Journal of Coal Geology 85:219–26. doi:10.1016/j.coal.2010.11.007.
  • Tagiri, M. 1981. A measurement of the graphitizing-degree by the X-ray powder diffractometer. Journal of Mineralogy Petrology & Economic Geology 76:345–52.
  • Ulyanova, E. V., A. N. Molchanov, I. Y. Prokhorov, and V. G. Grintov. 2014. Fine structure of Raman spectra in coals of different rank. International Journal of Coal Geology 121:37–43. doi:10.1016/j.coal.2013.10.014.
  • Vander Wal, R., A. J. Tomasek, M. I. Pamphlet, C. D. Taylor, and W. K. Thompson. 2004. Analysis of HRTEM images for carbon nanostructure quantification. Journal of Nanoparticle Research 6:555–68. doi:10.1007/s11051-004-3724-6.
  • Vidano, R., and D. B. Fischbach. 1978. Cheminform abstract: New lines in the Raman spectra of carbons and graphite. Chemischer Informationsdienst 9:24.
  • Wang, C. A., T. Huddle, E. Lester, and J. P. Mathews. 2016. Quantifying curvature in HRTEM lattice fringe micrographs of coals. Energy & Fuels 30:2694–704. doi:10.1021/acs.energyfuels.5b02907.
  • Wang, J., Y. Q. He, H. Li, J. D. Yu, W. N. Xie, and H. Wei. 2017. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques. Fuel 203:764–73. doi:10.1016/j.fuel.2017.05.042.
  • Wang, J. H., F. Li, L. P. Chang, and K. C. Xie. 2010. The structure characteristics and reactivity of lingwu coal and its macerals in western China. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects 32:1869–77. doi:10.1080/15567030902804772.
  • Wang, L., Y. J. Dong, H. Zhang, and D. Y. Cao. 2018. Factors affecting graphitization of coal and the experimental validation. Journal of Mining Science and Technology 3:9–19.
  • Wilks, K. R., M. Mastalerz, R. M. Bustin, and J. V. Ross. 1993. The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal. International Journal of Coal Geology 22:247–77. doi:10.1016/0166-5162(93)90029-A.
  • Yang, J. H., S. H. Cheng, X. Wang, Z. Zhang, X. R. Liu, and G. H. Tang. 2006. Quantitative analysis of microstructure of carbon materials by HRTEM. Transactions of Nonferrous Metals Society of China 16:s796–s803. doi:10.1016/S1003-6326(06)60303-8.
  • Yehliu, K., O. Armas, R. L. Vander Wal, and A. L. Boehman. 2013. Impact of engine operating modes and combustion phasing on the reactivity of diesel soot. Combustion and Flame 160:682–91. doi:10.1016/j.combustflame.2012.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.