209
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Coffee parchment as potential biofuel for cement industries of Ethiopia

, &
Pages 5004-5015 | Received 30 May 2019, Accepted 11 Aug 2019, Published online: 22 Aug 2019

References

  • Andrew, R. M. 2018. Global CO2 emissions from cement production. Earth System Science Data 10 (1):195. doi:10.5194/essd-10-195-2018.
  • Arranz, J. I., 2011. Analysis of densified of the combination from different biomass waste (Doctoral dissertation. (Doctoral Thesis) University of Extremadura, Badajoz, Spain.
  • Bajo, P. O., and M. N. Acda. 2017. Full pellets from a mixture of rice husk and wood particles. BioResources 12 (3):6618–28.
  • Bhattacharya, S. C., S. Sett, and R. M. Shrestha. 1989. State of the art for biomass densification. Energy Sources 11 (3):161–82. doi:10.1080/00908318908908952.
  • Bioenergy Europe Statistical Reportsing . 2018
  • Biswas, A. K., M. Rudolfsson, M. Broström, and K. Umeki. 2014. Effect of pelletizing conditions on combustion behaviour of single wood pellet. Applied Energy 119:79–84. doi:10.1016/j.apenergy.2013.12.070.
  • Boden, T. A., R. J. Andres, and G. Marland. 2017. Global, regional, and national fossil-fuel CO2 emissions (1751-2014). Oak Ridge, TN (United States): Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL).
  • Braz, C. E. M., and P. C. G. M. Crnkovic. 2014. Physical-chemical characterization of biomass samples for application iin pyrolysis process. Chemical Engineering Transactions 37: 523–28.DOI: 10.3303/CET1437088
  • Caetano, N. S., V. F. M. Silva, A. C. Melo, A. A. Martins, and T. M. Mata. 2014. Spent coffee grounds for biodiesel production and other applications. Clean Technologies and Environmental Policy 16 (7):1423–30. doi:10.1007/s10098-014-0773-0.
  • Camacho, Y. S., S. Bensaid, B. Ruggeri, L. Restuccia, G. Ferro, G. Mancini, and D. Fino. 2016. Valorisation of by-products/waste of agro-food industry by the pyrolysis process. Journal of Advanced Catalysis Science and Technology 3:1–11. doi:10.15379/2408-9834.2016.03.01.01.
  • Cembureau. 2013. Raw material substitution. Brussels: The. European Cement Association.
  • Cement Sustainability Initiative, CSI. 2005. Guidelines for the selection and use of fuels and raw materials in the cement manufacturing process. WBCSD pub. c/oEarthprint Limited. WbcSd.org
  • Cement, B.R.E.F. 2000. Reference document on best available techniques in the cement and lime manufacturing industries. Integrated pollution prevention and control (IPPC), European Commission, Directorate-General Joint Research Centre, Institute for Prospective Technological Studies (Seville), Technologies for Sustainable Development, European IPPC Bureau, Seville.
  • Chala, B., S. Latif, and J. Müller. 2015. Potential of by-products from primary coffee processing as source of biofuels. Tropentag 2015 “Plant 2030, 641. Potsdam: Germany. Book of Abstracts.
  • Chatziaras, N., C. S. Psomopoulos, and N. J. Themelis. 2014. Use of alternative fuels in cement industry. In Proceedings of the 12th international conference on protection and restoration of the environment,  edited by A. Liakopoulos, A. Kungolos, C. Christodoulatos, A. Koutsopsyros. 521–29. ISBN 978-960-88490-6-8
  • Dal-Bo, V., T. Lira, L. Arrieche, and M. Bacelos. 2019. Process synthesis for coffee husks to energy using hierarchical approaches. Renewable Energy 142:195–206. doi:10.1016/j.renene.2019.04.089.
  • de Almeida, L. F. P., A. V. H. Sola, and J. J. R. Behainne. 2017. Sugarcane bagasse pellets: characterization and comparative analysis. Acta Scientiarum: Technology 39 (4):461–68. doi:10.4025/actascitechnol.v39i4.30198.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30 (2):219–30. doi:10.1016/j.pecs.2003.10.004.
  • Djatkov, D., M. Martinov, and M. Kaltschmitt. 2018. Influencing parameters on mechanical–physical properties of pellet fuel made from corn harvest residues. Biomass and Bioenergy 119:418–28. doi:10.1016/j.biombioe.2018.10.009.
  • Domalski, E. S., T. L. Jobe, and T. A. Milne, Eds. 1987. Thermodynamic data for biomass materials and waste components. New York, NY: American Society of Mechanical Engineers (ASME).
  • Duca, D., G. Riva, E. F. Pedretti, and G. Toscano. 2014. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 135:9–14. doi:10.1016/j.fuel.2014.06.042.
  • Echeverria, M. C., and M. Nuti. 2017. Valorisation of the residues of coffee agro-industry: perspectives and limitations. The Open Waste Management Journal 10 (1):13–22. doi:10.2174/1876400201710010013.
  • Efomah, A. N., and A. Gbabo. 2015. The physical, proximate and ultimate analysis of rice husk briquettes produced from a vibratory block mould briquetting machine. International Journal of Innovative Research in Science, Engineering and Technology 2 (5):814–822.
  • ESMAP (1986). Agricultural residue briquetting pilot projects for substitute household and. Industrial fuel. UNDP/World Bank Technical report
  • European Commission directorate general environment (EC) (2003). Refuse derived fuel, current practice and perspectives (b4‐3040/2000/306517/mar/e3) final report.
  • Everard, C. D., C. C. Fagan, and K. P. McDonnell. 2012. Visible-near infrared spectral sensing coupled with chemometric analysis as a method for on-line prediction of milled biomass composition pre-palletizing. Journal of near Infrared Spectroscopy 20 (3):361–69. doi:10.1255/jnirs.997.
  • Fagan, C. C., C. D. Everard, and K. McDonnell. 2011. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresource Technology 102 (8):5200–06. doi:10.1016/j.biortech.2011.01.087.
  • Fehrenbach, H., U. Gromke, N. delBufalo, and D. Hogg, 2003. Refuse derived fuel, current practice and perspectives. final report, European Commission–DG Environment, Swindon, U.K.
  • García, C. A., Á. Peña, R. Betancourt, and C. A. Cardona. 2017. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: coffee Cut-Stems case. Journal of Environmental Management 216:160–68. doi:10.1016/j.jenvman.2017.04.029.
  • Garcia, R., M. V. Gil, F. Rubiera, and C. Pevida. 2019. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 251:739–53. doi:10.1016/j.fuel.2019.03.141.
  • Gemechu, B. 2009. Efforts at promoting, branding Ethiopia’s coffee. The Ethiopian Herald, July:19.
  • Giddings, D., C. N. Eastwick, S. J. Pickering, and K. Simmons. 2000. Computational fluid dynamics applied to a cement precalciner. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 214 (3):269–80.
  • Gillespie, G. D., C. D. Everard, C. C. Fagan, and K. P. McDonnell. 2013. Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel 111:771–77. doi:10.1016/j.fuel.2013.05.002.
  • Hewlett, P. 2003. Lea’s chemistry of cement and concrete. Elsevier. Butterworth-Heinemann.
  • IMARC Services Pvt. Ltd. 2019. Cement market: global industry trends, share, size, growth, opportunity and Forecast 2019–2024. IMARC Services Pvt. Ltd., February
  • International Coffee Organization. 2019. World coffee consumption, international coffee organization (ICO), July.
  • International Coffee Organization (ICO). 2017. World Coffee Production.
  • International Finance Corporation(IFC). 2017. All rights reserved. 2121 Pennsylvania Avenue, 20433 ifc.org,N.W. Washington, D.C.
  • Japhet, J. A., A. Tokan, and M. H. Muhammad. 2015. Production and characterization of rice husk pellet. American Journal of Engineering Research (AJER) 4 (12):112–19.
  • Kosmatka, S. H., B. Kerkhoff, and W. C. Panarese. 2011. Design and control of concrete mixtures. 15th ed. Skokie, Illinois, USA: Portland Cement Association.
  • Kuokkanen, M., T. Vilppo, T. Kuokkanen, T. Stoor, and J. Niinimaki. 2011. Additives in wood pellets. BioResources 4 (6):4331–55.
  • Kyauta, E. E., A. B. Adisa, L. N. Abdulkadir, and S. Balogun. 2015. Production and comparative study of pellets from maize cobs and groundnut shell as fuels for domestic use. Carbon 14:19–73.
  • Lechtenberg, D., Lechtenberg Partner. 2008. Alternative fuels in developing countries, MVW lechtenberg. Germany: Reprinted from World Cement.
  • Lewandowski, I., and A. Kicherer. 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. European Journal of Agronomy 6 (3–4):163–77. doi:10.1016/S1161-0301(96)02044-8.
  • McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83 (1):37–46.
  • McNutt, J., and Q. (Sophia) He. 2019. Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry 71:78–88. doi:10.1016/j.jiec.2018.11.054.
  • Mendoza Martinez, C. L., E. P. Alves Rocha, A. de Cassia Oliveira Carneiro., F. J. Borges Gomes, L. A. RibasBatalha, E. Vakkilainene, and M. Cardoso. 2019. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass and Bioenergy 120:68–76. doi:10.1016/j.biombioe.2018.11.003.
  • Mhilu, C. F. 2014. Analysis of energy characteristics of rice and coffee husks blends. ISRN Chemical Engineering 1:1–6. doi:10.1155/2014/196103.
  • Miranda, T., I. Montero, F. J. Sepúlveda, J. I. Arranz, C. V. Rojas, and S. Nogales. 2015. A review of pellets from different sources. Materials (Basel, Switzerland) 8 (4):1413–27. doi:10.3390/ma8041413.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Mokrzycki, E., A. Uliasz-Bocheńczyk, and M. Sarna. 2003. Use of alternative fuels in the Polish cement industry. Applied Energy 74 (1–2):101–11. doi:10.1016/S0306-2619(02)00136-8.
  • Munalula, F., and M. Meincken. 2009. An evaluation of South African fuelwood with regards to calorific value and environmental impact. BiomassBioenerg. 3 (3):415–20.
  • Murray, A., and L. Price. 2008. Use of alternative fuels in cement manufacture: Analysis of fuel characteristics and feasibility for use in the Chinese cement sector. Energy and resources group and environmental energy technologies division. UC Berkeley, U.S.A.
  • Nanda, S., P. Mohanty, K. K. Pant, S. Naik, J. A. Kozinski, and A. K. Dalai. 2013. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Research 6 (2):663–77. doi:10.1007/s12155-012-9281-4.
  • Obernberger, I., and G. Thek. 2004. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass & Bioenergy 27 (6):653–69. doi:10.1016/j.biombioe.2003.07.006.
  • Odunayo, A. R., P. Omoniyi, P. Leslie, and O. Olorunfemi. 2016. Comparative chemical and trace element composition of coal samples from Nigeria and South Africa. American Journal of Innovative Research & Applied Sciences 2 (9):391–404.
  • Passos, F., P. H. M. Cordeiro, B. E. L. Baeta, S. F. de Aquino, and S. I. Perez-Elvira. 2018. Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis. Bioresource Technology 253:49–54. doi:10.1016/j.biortech.2018.01.081.
  • Pattiya, A. 2011. Thermochemical characterization of agricultural wastes from Thai cassava plantations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33 (8):691–701. doi:10.1080/15567030903228922.
  • Paula, L. E. D. R., P. F. Trugilho, A. Napoli, and M. L. Bianchi. 2011. Characterization of residues from plant biomass for use in energy generation. Cerne 17 (2):237–46. doi:10.1590/S0104-77602011000200012.
  • Poddar, S., M. Kamruzzaman, S. M. A. Sujan, M. Hossain, M. S. Jamal, M. A. Gafur, and M. Khanam. 2014. Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: Higher heating value. Fuel 131:43–48. doi:10.1016/j.fuel.2014.04.061.
  • Poponi, D., T. Bryant, K. Burnard, P. Cazzola, J. Dulac, A. Fernandez Pales, and K. West. 2016. Energy technology perspectives: Towards sustainable urban energy systems. Paris: International Energy Agency.
  • Rahman, A., M. G. Rasul, M. M. K. Khan, and S. Sharma. 2013. Impact of alternative fuels on the cement manufacturing plant performance: an overview. Procedia Engineering 56:393–400. doi:10.1016/j.proeng.2013.03.138.
  • Sánchez, E. A., M. B. Pasache, and M. E. García. 2014. Development of briquettes from waste wood (sawdust) for use in low-income households in Piura, Peru. In Proceedings of the World Congress on Engineering,Vol. 2, 2–4. WCE, London,U.K.
  • Seboka, Y., M. A. Getahun, and Y. Haile-Meskel. 2009. Biomass energy for cement production: opportunities in Ethiopia. New York, NY: United Nations Development Program.
  • Sharabaroff, A., D. Bernard, D. Lemarchand, N. Tetreault, C. Thevenet, and A. de Souance. 2017. Increasing the use of alternative fuels at cement plants: International best practice. Washington, D.C.,USA: World Bank Group.
  • Singh, H., P. K. Sapra, and B. S. Sidhu. 2013. Evaluation and characterization of different biomass residues through proximate & ultimate analysis and heating value. Asian Journal of Engineering and Applied Technology 2 (2):6–10.
  • Smidth, F. L. 2000. Dry process kiln systems. Denmark: Technical Brochure.
  • Stahl, R., E. Henrich, H. J. Gehrmann, S. Vodegel, and M. Koch. 2004. Definition of a standard biomass. RENEW—Renewable Fuels for Advanced Power Trains.
  • Taylor, M., C. Tam, and D. Gielen. 2006. Energy efficiency and CO2 emissions from the global cement industry. Korea 50 (2.2):61–67.
  • Tokan, A., M. H. Muhammad, J. A. Japhet, and E. E. Kyauta. 2016. Comparative analysis of the effectiveness of rice husk pellets and charcoal as fuel for domestic purpose. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 13 (5 Ver. VI):21–27. doi:10.9790/1684-1305062127.
  • Tumuluru, J. S., C. T. Wright, J. R. Hess, and K. L. Kenney. 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining 5 (6):683–707. doi:10.1002/bbb.324.
  • Unpinit, T., T. Poblarp, N. Sailoon, P. Wongwicha, and M. Thabuot. 2015. Fuel properties of bio-pellets produced from selected materials under various compacting pressure. Energy Procedia 79:657–62. doi:10.1016/j.egypro.2015.11.551.
  • World Cement. 2019. Ethiopian cement market shows strong growth. World Cement, February, 07, Thursday.
  • Yang, L., L. Nazari, Z. Yuan, K. Corscadden, C. (Charles) Xu, and Q. (Sophia) He. 2016. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy 86:191–98. doi:10.1016/j.biombioe.2016.02.005.
  • Yang, X., H. Wang, P. J. Strong, S. Xu, S. Liu, K. Lu, K. Sheng, J. Guo, L. Che, L. He, et al. 2017. Thermal properties of biochars derived from waste biomass generated by agricultural and forestry sectors. Energies 10 (4):469–82. doi:10.3390/en10040469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.