331
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Viscosity-reduction mechanism of waxy crude oil in low-intensity magnetic field

, , &
Pages 5080-5093 | Received 15 Nov 2018, Accepted 11 Aug 2019, Published online: 02 Sep 2019

References

  • Bai, C., and J. Zhang. 2013. Effect of carbon number distribution of wax on the yield stress of waxy oil gels. Industrial & Engineering Chemistry Research 52:2732–39. doi:10.1021/ie303371c.
  • Boytsova, A. A., and N. K. Kondrasheva. 2016. Changes in the properties of heavy oil from Yarega oil field under the action of magnetic fields and microwave radiation. Theoretical Foundations of Chemical Engineering 50:831–35. doi:10.1134/S0040579516050031.
  • Chen, S., H. Hao, H. Y. Chuai, Z. Tong, and Y. Li. 2016. Dynamic monitoring of crude oil magnetic treatment by etched fiber bragg gratings. Paper presented at the 15th International Conference on Optical Communications and Networks (ICOCN), IEEE, Hangzhou, China, September 24–27. doi:10.1109/ICOCN.2016.7875876.
  • Chen, X., L. Hou, W. Li, S. Li, and Y. Chen. 2018. Molecular dynamics simulation of magnetic field influence on waxy crude oil. Journal of Molecular Liquids 249:1052–59. doi:10.1016/j.molliq.2017.11.101.
  • Evdokimov, I. N., and K. A. Kornishin. 2009. Apparent disaggregation of colloids in a magnetically treated crude oil. Energy & Fuels : an American Chemical Society Journal 23:4016–20. doi:10.1021/ef900296e.
  • Gonçalves, J. L., A. J. F. Bombard, D. A. W. Soares, and G. B. Alcantara. 2010. Reduction of paraffin precipitation and viscosity of Brazilian crude oil exposed to magnetic fields. Energy & Fuels : an American Chemical Society Journal 24:3144–49. doi:10.1021/ef901302y.
  • Gonçalves, J. L., A. J. F. Bombard, D. A. W. Soares, R. D. M. Carvalho, A. Nascimento, M. R. Silva, G. B. Alcântara, F. Pelegrini, E. D. Vieira, K. R. Pirota, et al. 2011. Study of the factors responsible for the rheology change of a Brazilian crude oil under magnetic fields. Energy & Fuels : an American Chemical Society Journal 25:537–3543. doi:10.1021/ef101740b.
  • Hammami, A. 1994. Thermal behavior and non-isothermal crystallization kinetics of normal-alkanes and their waxy mixtures under quiescent conditions. PhD diss., University of Calgary.
  • Homayuni, F., A. A. Hamidi, A. Vatani, A. A. Shaygani, and R. F. Dana. 2011. The viscosity reduction of heavy and extra heavy crude oils by a pulsed magnetic field. Petroleum Science and Technology 29:2407–15. doi:10.1080/10916461003645443.
  • Hoof, P. J. C. M., W. J. P. Enckevort, M. Schoutsen, P. Bennema, and X. Y. Liu. 1998. Change of morphology and growth mechanism of thin n-paraffin crystals induced by homologous impurities. Journal of Crystal Growth 183:641–52. doi:10.1016/S0022-0248(97)00502-2.
  • Jiang, C., K. Zhao, L. Zhao, W. Jin, Y. Yang, and S. Chen. 2014. Probing disaggregation of crude oil in a magnetic field with Terahertz time-domain spectroscopy. Energy & Fuels : an American Chemical Society Journal 28:483–87. doi:10.1021/ef401984u.
  • Jin, W., J. Jing, H. Wu, L. Yang, Y. Li, X. Shu, and Y. Wang. 2014. Study on the inherent factors affecting the modification effect of EVA on waxy crude oils and the mechanism of pour point depression. Journal of Dispersion Science and Technology 35 (10):1434–41. doi:10.1080/01932691.2013.850432.
  • Kané, M., M. Djabourov, J. L. Volle, J. P. Lechaire, and G. Frebourg. 2003. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow. Fuel 82:127–35. doi:10.1016/S0016-2361(02)00222-3.
  • Kharchenko, M., A. Manhura, S. Manhura, and I. Lartseva. 2017. Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits. Mining of Mineral Deposits 11:28–33. doi:10.15407/mining11.02.028.
  • Krieger, I. M., and T. J. Dougherty. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology 3:137–52. doi:10.1122/1.548848.
  • Loskutova, Y. V., I. V. Prozorova, N. V. Yudina, S. V. Rikkonen, and V. A. Daneker. 2004. Change in the rheological properties of high‐paraffin petroleums under the action of vibrojet magnetic activation. Journal of Engineering Physics and Thermophysics 77:1034–39. doi:10.1023/B:JOEP.0000049547.70663.92.
  • Loskutova, Y. V., and N. V. Yudina. 2003. Effect of constant magnetic field on the rheological properties of high-paraffinicity oils. Colloid Journal 65:469–74. doi:10.1023/A:1025172903156.
  • Loskutova, Y. V., and N. V. Yudina. 2004. Effect of constant magnetic field on the structural and mechanical properties of paraffin-base crude oils. Petroleum Chemistry 44:58–62.
  • Loskutova, Y. V., and N. V. Yudina. 2006. Rheological behavior of oils in a magnetic field. Journal of Engineering Physics and Thermophysics 79:105–13. doi:10.1007/s10891-006-0073-6.
  • Loskutova, Y. V., N. V. Yudina, and S. I. Pisareva. 2008. Effect of magnetic field on the paramagnetic, antioxidant, and viscosity characteristics of some crude oils. Petroleum Chemistry 48:51–55. doi:10.1134/S0965544108010106.
  • Musina, N. S., and T. A. Maryutina. 2016. Application of magnetic treatment to changing the composition and physicochemical properties of crude oil and petroleum products. Journal of Analytical Chemistry 71 (1):27–34. doi:10.1134/S1061934816010081.
  • Pandey, D., D. B. Pandey, and S. Suyal. 2016. Viscosity alteration of paraffin based crude oil using pulsated magnetic field. Paper presented at the SPE Europec featured at 78th EAGE Conference and Exhibition, Vienna, Austria, May 30 - June 2.
  • Rezaei, A., Y. Kazemzadeh, and S. Nikandish. 2018. An experimental study on the effect of constant magnetic fields on asphaltene deposition in dynamic conditions. Paper presented at the 80th EAGE Conference and Exhibition, Copenhagen, Denmark, June 11 - 14.
  • Rocha, N., C. González, L. C. C. Marques, and D. S. Vaitsman. 2000. A preliminary study on the magnetic treatment of fluids. Petroleum Science and Technology 18:33–50. doi:10.1080/10916460008949830.
  • Roenningsen, H. P., B. Bjoerndal, A. B. Hansen, and W. B. Pedersen. 1991. Wax precipitation from North Sea crude oils: 1. Crystallization and dissolution temperatures, and Newtonian and non-Newtonian flow properties. Energy & Fuels : an American Chemical Society Journal 5:895–908. doi:10.1021/ef00030a019.
  • Shao, H. H., H. Gang, and E. B. Sirota. 1998. Magnetic-field induced orientation and anisotropic susceptibility of normal alkanes. Physical Review E 57:R6265–R6268. doi:10.1103/PhysRevE.57.R6265.
  • Sun, J., J. Jing, C. Wu, F. Xiao, and X. Luo. 2016. Pipeline transport of heavy crudes as stable foamy oil. Journal of Industrial and Engineering Chemistry 44:126–135. doi:10.1016/j.jiec.2016.08.019.
  • Taheri-Shakib, J., A. Shekarifard, and H. Naderi. 2018. Characterization of the wax precipitation in Iranian crude oil based on wax appearance temperature (WAT): Part 1. The influence of electromagnetic waves. Journal of Petroleum Science and Engineering 161:530–40. doi:10.1016/j.petrol.2017.12.012.
  • Tao, R. 2007. The physical mechanism to reduce viscosity of liquid suspensions. International Journal of Modern Physics B 21:4767–73. doi:10.1142/S0217979207045645.
  • Tao, R., and X. Xu. 2006. Reducing the viscosity of crude oil by pulsed electric or magnetic field. Energy & Fuels : an American Chemical Society Journal 20:2046–51. doi:10.1021/ef060072x.
  • Tung, N. P., N. Q. Vinh, N. T. P. Phong, B. Q. K. Long, and P. V. Hung. 2003. Perspective for using Nd–Fe–B magnets as a tool for the improvement of the production and transportation of Vietnamese crude oil with high paraffin content. Physica B: Condensed Matter 327:443–47. doi:10.1016/S0921-4526(02)01788-X.
  • Tung, N. P., N. V. Vuong, B. Q. K. Long, N. Q. Vinh, P. V. Hung, V. T. Hue, and L. D. Hoe. 2001. Studying the mechanism of magnetic field influence on paraffin crude oil viscosity and wax deposition reductions. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, April 17 - 19.
  • Vasilyeva, M. A.2017. Equipment for generating running magnetic fields for peristaltic transport of heavy oil. Paper presented at the IEEE 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),Saint Petersburg, Russia, May 16 - May 19. doi:10.1109/ICIEAM.2017.8076356.
  • Yi, P., Rutledge, G. C. 2011. Molecular simulation of bundle-like crystal nucleation from n-eicosane melts. The Journal of Chemical Physics 135:024903. doi:10.1063/1.3608056.
  • Zhang, W., D. Wang, T. Wang, and S. Zhang. 2015. Study on the mechanism of magnetic paraffin control of crude oil based on the reorientation of paraffin crystals induced by magnetic field. Applied Mechanics and Materials 743:137–41. doi:10.4028/scientific.net/AMM.743.137.
  • Zhang, W., T. Wang, X. Li, and S. Zhang. 2013. The effect of magnetic field on the deposition of paraffin wax on the oil pipe. Advanced Materials Research 788:719–22. doi:10.4028/scientific.net/AMR.788.719.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.