450
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction

ORCID Icon, ORCID Icon &
Pages 3409-3420 | Received 19 Feb 2019, Accepted 14 Jul 2019, Published online: 17 Sep 2019

References

  • Ashwaniy, V. R. V., and M. Perumalsamy. 2017. Reduction of organic compounds in petro-chemical industry effluent and desalination using Scenedesmus abundans algal microbial desalination cell. Journal of Environmental Chemical Engineering 5:5961–67. doi:10.1016/J.JECE.2017.11.017.
  • ASTM. 2016. Standard test methods for chemical oxygen demand (Dichromate oxygen demand) of water, vol. 6, 1–12. Pennsylvania, USA. doi: 10.1520/D1252-06R12E01.
  • Chaudhuri, S. K., and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology 21:1229–32. doi:10.1038/nbt867.
  • Christwardana, M. 2017. Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance. Enzyme and Microbial Technology 106:1–10. doi:10.1016/J.ENZMICTEC.2017.06.012.
  • Christwardana, M., and H. Hadiyanto. 2017. The effects of audible sound for enhancing the growth rate of microalgae haematococcus pluvialis in vegetative stage. HAYATI Journal of Biosciences 24:149–55. doi:10.1016/j.hjb.2017.08.009.
  • Christwardana, M., and Y. Kwon. 2017. Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell. Bioresource Technology 225:175–82. doi:10.1016/j.biortech.2016.11.051.
  • De Caprariis, B., P. De Filippis, A. Di Battista, L. Di Palma, and M. Scarsella. 2014. Exoelectrogenic activity of a green microalgae, chlorella vulgaris, in a bio-photovoltaic cells (bpvs). Chemical Engineering Transactions 38:523–28. doi:10.3303/CET1438088.
  • Di Lorenzo, M., K. Scott, T. P. Curtis, and I. M. Head. 2010. Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chemical Engineering Journal 156:40–48. doi:10.1016/j.cej.2009.09.031.
  • Dorr, J. V. N., and F. L. Bosqui. 1950. Cyanidation and concentration of gold and silver ores. New York: McGraw-Hill. file://catalog.hathitrust.org/Record/001041357.
  • Frattini, D., G. Accardo, C. Ferone, and R. Cioffi. 2017. Fabrication and characterization of graphite-cement composites for microbial fuel cells applications. Materials Research Bulletin 88:188–99. doi:10.1016/j.materresbull.2016.12.037.
  • Gajda, I., J. Greenman, C. Melhuish, and I. Ieropoulos. 2013. Photosynthetic cathodes for microbial fuel cells. International Journal of Hydrogen Energy 38:11559–64. doi:10.1016/j.ijhydene.2013.02.111.
  • Gajda, I., J. Greenman, C. Melhuish, and I. Ieropoulos. 2015. Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass & Bioenergy 82:87–93. doi:10.1016/J.BIOMBIOE.2015.05.017.
  • González Del Campo, A., P. Cañizares, M. A. Rodrigo, F. J. Fernández, and J. Lobato. 2013. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources 242:638–45. doi:10.1016/J.JPOWSOUR.2013.05.110.
  • Gonzalez Del Campo, A., J. F. Perez, P. Cañizares, M. A. Rodrigo, F. J. Fernandez, and J. Lobato. 2015. Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel 140:209–16. doi:10.1016/j.fuel.2014.09.087.
  • Greenman, J., and I. A. Ieropoulos. 2017. Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up. Journal of Power Sources 356:365–70. doi:10.1016/J.JPOWSOUR.2017.04.033.
  • Hadiyanto, H., and M. M. A. Nur. 2014. Lipid extraction of microalga Chlorella sp. cultivated in palm oil mill effluent (POME) medium. World Applied Sciences Journal 31:959–67.
  • Hadiyanto, H., M. M. A. Nur, and G. D. Hartanto. 2012. Cultivation of Chlorella sp. as biofuel sources in palm oil mill effluent (POME). International Journal of Renewable Energy Development 1:45–49. doi:10.14710/ijred.1.2.45-49.
  • Haslett, N. D., F. J. Rawson, F. Barriëre, G. Kunze, N. Pasco, R. Gooneratne, and K. H. R. Baronian. 2011. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics 26:3742–47. doi:10.1016/j.bios.2011.02.011.
  • Juang, D. F., C. H. Lee, and S. C. Hsueh. 2012. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Bioresource Technology 123:23–29. doi:10.1016/J.BIORTECH.2012.07.041.
  • Kaewkannetra, P., W. Chiwes, and T. Y. Chiu. 2011. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel 90:2746–50. doi:10.1016/j.fuel.2011.03.031.
  • Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiology and Biotechnology 63:672–81. doi:10.1007/s00253-003-1412-6.
  • Kumar, A., and S. R. Samadder. 2017. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management 69:407–22. doi:10.1016/j.wasman.2017.08.046.
  • Leano, E. P., and S. Babel. 2011. Electricity generation from anaerobic sludge and cassava wastewater subjected to pretreatment methods using microbial fuel cell. IEEE Conf. Clean Energy Technol., IEEE, Kuala Lumpur, Malaysia, 1–5. doi:10.1109/CET.2011.6041448.
  • Lee, D.-J., J.-S. Chang, and J.-Y. Lai. 2015. Microalgae–Microbial fuel cell: A mini review. Bioresource Technology 198:891–95. doi:10.1016/j.biortech.2015.09.061.
  • Lobato, J., A. González Del Campo, F. J. Fernández, P. Cañizares, and M. A. Rodrigo. 2013. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. Applied Energy 110:220–26. doi:10.1016/j.apenergy.2013.04.010.
  • Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology 7:375–81. doi:10.1038/nrmicro2113.
  • Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environmental Science & Technology 40:5181–92. doi:10.1021/es0605016.
  • Logroño, W., M. Pérez, G. Urquizo, A. Kadier, M. Echeverría, C. Recalde, and G. Rákhely. 2017. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 176:378–88. doi:10.1016/j.chemosphere.2017.02.099.
  • Lu, N., S. Zhou, L. Zhuang, J. Zhang, and J. Ni. 2009. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal 43:246–51. doi:10.1016/j.bej.2008.10.005.
  • Oh, S.-E., and B. E. Logan. 2006. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology 70:162–69. doi:10.1007/s00253-005-0066-y.
  • Olaizola, M., and E. O. Duerr. 1990. Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. Journal of Applied Phycology 2:97–104. doi:10.1007/BF00023370.
  • Powell, E. E., R. W. Evitts, G. A. Hill, and J. C. Bolster. 2011. A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 33:440–48. doi:10.1080/15567030903096931.
  • Prabowo, A. K., A. P. Tiarasukma, M. Christwardana, and D. Ariyanti. 2016. Microbial fuel cells for simultaneous electricity generation and organic degradation from slaughterhouse wastewater. The International Journal of Renewable Energy Development 5:107–12. doi:10.14710/ijred.5.2.107-112.
  • Qian, F., and D. E. Morse. 2011. Miniaturizing microbial fuel cells. Trends in Biotechnology 29:62–69. doi:10.1016/j.tibtech.2010.10.003.
  • Richmond, A., ed. 2008. Handbook of microalgal culture: Biotechnology and applied phycology. New York: John Wiley & Sons, Inc.
  • Rong, G., and Q. Hu. 2017. The effect of different wavelength of light for microbial fuel cell with an anode of rhodopseudomonas faecalis (PSB-B). Open Access Library Journal 4:1–7. doi:10.4236/oalib.1103389.
  • Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101:87–96. doi:10.1263/jbb.101.87.
  • Velasquez-Orta, S. B., T. P. Curtis, and B. E. Logan. 2009. Energy from algae using microbial fuel cells. Biotechnology and Bioengineering 103:1068–76. doi:10.1002/bit.22346.
  • Venkata Subhash, G., R. Chandra, and S. Venkata Mohan. 2013. Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresource Technology 136:644–53. doi:10.1016/j.biortech.2013.02.035.
  • Xi, J., Z. Wu, X. Qiu, and L. Chen. 2007. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources 166:531–36. doi:10.1016/j.jpowsour.2007.01.069.
  • Xu, C., K. Poon, M. M. F. Choi, and R. Wang. 2015. Using live algae at the anode of a microbial fuel cell to generate electricity. Environmental Science and Pollution Research 22:15621–35. doi:10.1007/s11356-015-4744-8.
  • Zhou, M., H. He, T. Jin, and H. Wang. 2012. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources 214:216–19. doi:10.1016/j.jpowsour.2012.04.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.