107
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Formation and development of cavitation in a transparent nozzle with double orifices on different planes

, , &
Pages 3438-3452 | Received 20 Dec 2018, Accepted 23 Jun 2019, Published online: 17 Sep 2019

References

  • Agarwal, A. K., S. Som, P. C. Shukla, H. Goyal, and D. Longman. 2015. In-nozzle flow and spray characteristics for mineral diesel, Karanja and Jatropha biodiesels. Applied Energy 156:138–48. doi:10.1016/j.apenergy.2015.07.003.
  • Agarwala, A. K., A. Dhar, J. G. Gupta, W. I. Kim, K. Choi, C. S. Lee, and S. Park. 2015. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management 91:302–14. doi:10.1016/j.enconman.2014.12.004.
  • Andriotis, A., M. Gavaises, and C. Arcoumanis. 2008. Vortex flow and cavitation in diesel injector nozzle. Journal of Fluid Mechanics 610:195–215. doi:10.1017/S0022112008002668.
  • Bauer, D., H. Chaves, and C. Arcoumanis. 2012. Measurements of void fraction distribution in cavitating pipe flow using x-ray CT. Measurement Science and Technology 23 (5):055302. doi:10.1088/0957-0233/23/5/055302.
  • Fan, H., Y. Liu, H. Wang, and Z. Zhu. 2013. Investigation on unsteady performance of double entry turbine under different conditions. Vehicle Engine (208):39–43. doi:10.3969/j.issn.1001-2222.2013.05.008.
  • Ghiji, M., L. Goldsworthy, P. A. Brandner, V. Garaniya, and P. Hield. 2017. Analysis of diesel spray dynamics using a compressible Eulerian/VOF/LES model and microscopic shadowgraphy. Fuel 188:352–66. doi:10.1016/j.fuel.2016.10.041.
  • He, Z. X., Q. Wang, Y. J. P. Yuan, and D. T. Li. 2009. CFD analysis for effect of injection pressure fluctuation on cavitating flow in diesel engine nozzle. Chinese Internal Combustion Engine Engineering 30:64–68. doi:10.13949/j.cnki.nrjgc.2009.01.003.
  • He, Z., Z. Shao, Q. Wang, W. Zhong, and X. Tao. 2015. Experimental study of cavitation flow inside vertical multi-hole nozzles with different length-diameter ratios using diesel and biodiesel. Experimental Thermal and Fluid Science 60:252–62. doi:10.1016/j.expthermflusci.2014.09.015.
  • He, Z., Z. Zhang, G. Guo, Q. Wang, X. Leng, and S. Sun. 2016. Visual experiment of transient cavitating flow characteristics in the real-size diesel injector nozzle. International Communications in Heat and Mass Transfer 78:13–20. doi:10.1016/j.icheatmasstransfer.2016.08.004.
  • He, Z. X., W. J. Zhong, Q. Wang, Z. C. Jiang, and Z. Shao. 2013. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle. International Journal of Thermal Sciences 70:132–43. doi:10.1016/j.ijthermalsci.2013.03.008.
  • Jiang, G., Y. Zhang, H. Wen, and G. Xiao. 2015. Study of the generated density of cavitation inside diesel nozzle using different fuels and nozzles. Energy Convers Manage 103:208–17. doi:10.1016/j.enconman.2015.06.065.
  • Kadivar, E., E. Kadivar, K. Javadi, and S. M. Javadpour. 2017. The investigation of natural super-cavitation flow behind three-dimensional cavitators: Full cavitation model. Applied Mathematical Modelling 45:165–78. doi:10.1016/j.apm.2016.12.017.
  • Karathanassis, I., P. Koukouvinis, E. Kontolatis, Z. Lee, J. Wang, N. Mitroglou, and M. Gavaises. 2018. High-speed visualization of vortical cavitation using synchrotron radiation. Journal of Fluid Mechanics 838:148–64. doi:10.1017/jfm.2017.885.
  • Liang, S. S., H. Wen, and G. Jiang. 2018. Research of gas ingestion in orifice of diesel nozzle after the end of injection. Journal of Engineering Thermophysis. Chinese Academy of Sciences 39:2818–23.
  • Liang, J., X. Luo, Y. Liu, X. Li, and T. Shi. 2016. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves. International Journal of Heat and Mass Transfer 103:684–700. doi:10.1016/j.ijheatmasstransfer.2016.07.112.
  • Liu, W. 2014. The microscopic features of cavitation erosion and the solution in the plastic injection moulding machines. Engineering Failure Analysis 36:253–61. doi:10.1016/j.engfailanal.2013.10.013.
  • Min, W., D. W. Zhi, and Z. Hong. 2018. Visualization experiment of vibration and cavitation in poppet valve under low pressure condition. Journal of Mechanical Engineering 20:139–44. doi:10.3901/JME.2018.20.139.
  • Mitroglou, N., M. McLorn, M. Gavaises, C. Soteriou, and M. Winterbourne. 2014. Instantaneous and ensemble average cavitation structures in Diesel micro-channel flow orifices. Fuel 116:736–42. doi:10.1016/j.fuel.2013.08.060.
  • Nurick, W. H. 1976. Orifice cavitation and its effects on spray mixing. Journal of Fluids Engineering 98 (4):681–87. doi:10.1115/1.3448452.
  • Qiu, T., X. Song, Y. Lei, H. F. Dai, C. L. Cao, H. Xu, and X. Feng. 2016. Effect of back pressure on nozzle inner flow in fuel injector. Fuel 173:79–89. doi:10.1016/j.fuel.2016.01.044.
  • Rachakonda, S. K., Y. Wang, R. O. Grover Jr., M. Moulai, E. Baldwin, G. Zhang, S. Parrish, R. Diwakar, T.-W. Kuo, and D. P. Schmidt. 2018. A computational approach to predict external spray characteristics for flashing and cavitating nozzles. International Journal of Multiphase Flow 106:21–33. doi:10.1016/j.ijmultiphaseflow.2018.04.012.
  • Salvador, F. J., M. Carreres, D. Jaramillo, and J. Martínez-López. 2015. Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conversion and Management 103:284–99. doi:10.1016/j.enconman.2015.05.062.
  • Simpson, A., and V. V. Ranade. 2018. Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chemical Engineering Research and Design 136:698–711. doi:10.1016/j.cherd.2018.06.014.
  • Sou, A. 2016. Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle. Applied Mathematical Modelling 40:4712–26. doi:10.1016/j.apm.2015.11.049.
  • Sun, Z. Y., G. X. Li, C. Chen, Y. S. Yu, and G. X. Gao. 2015. Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Conversion and Management 89:843–61. doi:10.1016/j.enconman.2014.10.047.
  • Tao, X. 2016. Experimental study of cavitation flow in tapered hole diesel injector nozzle and its influence on spray characteristics. Jiangsu University, China.
  • Tomiyama, A., A. Sou, and B. Biçer. 2014. Numerical simulation of incipient cavitation flow in a nozzle of fuel injector. Computers & Fluids 103:42–48. doi:10.1016/j.compfluid.2014.07.011.
  • Tomov, P., S. Khelladi, F. Ravelet, C. Sarraf, F. Bakir, and P. Vertenoeuil. 2016. Experimental study of aerated cavitation in a horizontal venturi nozzle. Experiment Thermal and Fluid Science 70:85–95. doi:10.1016/j.expthermflusci.2015.08.018.
  • Vujanović, M., Z. Petranović, W. Edelbauer, J. Baleta, and N. Duić. 2015. Numerical modeling of diesel spray using the eulerian multiphase approach. Energy Conversion and Mangement 104:160–69. doi:10.1016/j.enconman.2015.03.040.
  • Wan, C. 2018. Formation of residual bubbles in diesel fuel injection nozzle and its effect on initial near-field atomization. Nanchang University, China.
  • Wang, X., and W. Su. 2007. The influence of cavitation process on the internal flow characteristics of diesel injection nozzle. Transaction of CSICE 25:481–87. doi:10.16236/j.cnki.nrjxb.2007.06.002.
  • Watanabe, H., M. Nishikori, T. Hayashi, M. Suzuki, N. Kakehashi, and M. Ikemoto. 2015. Visualization analysis of relationship between vortex flow and cavitation behavior in diesel nozzle. International Journal of Engine Research 16:5–12. doi:10.1177/1468087414562459.
  • Wei, M., Y. Gao, F. Yan, L. Chen, L. Feng, G. Li, and C. Zhang. 2017. Experimental study of cavitation formation and primary breakup for a biodiesel surrogate fuel (methyl butanoate) using transparent nozzle. Fuel 203:690–99. doi:10.1016/j.fuel.2017.05.022.
  • Wen, H., and C. Wang. 2017. Influence of ambient pressure on gas ingestion in the diesel after end of injection. Journal of Agricultural Machinery 48 (10):364–69. doi:10.604/j.issn.1000-1298.2017.10.047.
  • Westlye, F. R., M. Battistoni, S. Skeen, J. Manin, L. M. Pickett, and A. Ivarsson. 2016. Penetration and combustion characterization of cavitating and non-cavitating fuel injectors. Paper presented at the annual meeting for SAE International, University of California Berkeley, July 1–15. doi:10.4271/2016-01-0860.
  • Xue, F., F. Luo, H. Cui, A. Moro, and L. Zhou. 2017. Numerical analyses of transient flow characteristics within each nozzle hole of an asymmetric diesel injector. International Journal of Heat and Mass Transfer 104:18–27. doi:10.1016/j.ijheatmasstransfer.2016.08.027.
  • Yan, J., I. Battiato, and G. Fadel. 2017. Design of injection nozzle in direct metal deposition (DMD) manufacturing of thin-walled structures based on 3D models. The International Journal of Advanced Manufacturing Technology 91:605–16. doi:10.1007/s00170-016-9773-z.
  • Yang, B., F. Cuoco, and M. Oschwald. 2015. Atomization and flames in LOX/H-2- and LOX/CH4-spray combustion. Journal of Propulsion and Power 23:763–71. doi:10.2514/1.26538.
  • Yin, B., S. Yu, and H. Jia. 2016. Numerical research of diesel spray and atomization coupled cavitation by Large Eddy Simulation (LES) under high injection pressure. International Journal of Heat and Fluid Flow 59:1–9. doi:10.1016/j.ijheatfluidflow.2016.01.005.
  • Zhang, L., and W. Xia. 1989. Cavitation and damage. Hohai university, China.
  • Zhang, X., Z. He, Q. Wang, X. Tao, Z. Zhou, X. Xia, and W. Zhang. 2018. Effect of fuel temperature on cavitation flow inside vertical multi-hole nozzles and spray characteristics with different nozzle geometries. Experimental Thermal and Fluid Science 91:374–87. doi:10.1016/j.expthermflusci.2017.06.006.
  • Zheng, J. B., X. L. Miao, J. H. Hong, S. H. Xia, and Y. S. Ju. 2014. Effect of needle lift on cavitation of SAC nozzle in common rail system. Transactions of CSICE 32:52–56. doi:10.16236/j.cnki.nrjxb.2014.01.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.