441
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect of treatment on electron transfer mechanism in microbial fuel cell

ORCID Icon, &
Pages 3843-3858 | Received 14 Feb 2019, Accepted 17 Jun 2019, Published online: 25 Sep 2019

References

  • Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Applied Microbiology and Biotechnology 78:409–18. doi:10.1007/s00253-007-1327-8.
  • Ahn, Y., and B. E. Logan. 2013. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Bioresource Technology 132:436–39. doi:10.1016/j.biortech.2013.01.113.
  • Arkatkar, A., A. K. Mungray, and P. Sharma. 2018. Effect of Microbial Growth on Internal Resistances in MFC:A Case Study. In Innovations in infrastructure. Advances in intelligent systems and computing, ed. D. Deb, V. E. Balas and R. Dey, Vol. 797, 469–79. Singapore, IIT-RAM, Ahmedabad: Springer.
  • Arkatkar, A., P. Sharma, and A. K. Mungray. 2019. Electroactive Biofilms: Application in MicrobialFuel Cell. In RED BIOTECHNOLOGY, ed. D. A. S. Tomar and D. V. B. Mandaliya, Vol. 1, 1–42. New Delhi, India: Daya Publishing House® A Division of Astral International Pvt. Ltd.
  • Aslan, S., P. Ó. Conghaile, D. Leech, L. Gorton, S. Timur, and U. Anik. 2017a. Development of an osmium redox polymer mediated bioanode and examination of its performance in gluconobacter oxydans based microbial fuel cell. Electroanalysis 29:1651–57. doi:10.1002/elan.201600727.
  • Aslan, S., P. Ó Conghaile, D. Leech, L. Gorton, S. Timur, and U. Anik. 2017b. Development of a bioanode for microbial fuel cells based on the combination of a MWCNT-Au-Pt hybrid nanomaterial, an osmium redox polymer and gluconobacter oxydans DSM 2343 cells. ChemistrySelect 2:12034–40. doi:10.1002/slct.201702868.
  • Beyenal, H., and J. T. Babauta. 2015. Biofilms in bioelectrochemical systems: From laboratory practice to data interpretation. New Jersey: John Wiley & Sons.
  • Borole, A. P., D. Aaron, C. Y. Hamilton, and C. Tsouris. 2010. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environmental Science & Technology 44:2740–45. doi:10.1021/es9032937.
  • Bosire, E. M., and M. A. Rosenbaum. 2017. Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by pseudomonas aeruginosa. Frontiers in Microbiology 8:892–892. doi:10.3389/fmicb.2017.00892.
  • Chen, L., P. Zhang, W. Shang, H. Zhang, Y. Li, W. Zhang, Z. Zhang, and F. Liu. 2018. Enrichment culture of electroactive microorganisms with high magnetic susceptibility enhances the performance of microbial fuel cells. Bioelectrochemistry 121:65–73. doi:10.1016/j.bioelechem.2018.01.005.
  • Chen, W., Z. Liu, G. Su, Y. Fu, X. Zai, C. Zhou, and J. Wang. 2017. Composite-modified anode by MnO2/polypyrrole in marine benthic microbial fuel cells and its electrochemical performance. International Journal of Energy Research 41:845–53. doi:10.1002/er.v41.6.
  • Cornejo, J. A., C. Lopez, S. Babanova, C. Santoro, K. Artyushkova, L. Ista, A. J. Schuler, and P. Atanassov. 2015. Surface modification for enhanced biofilm formation and electron transport in Shewanella Anodes. Journal of the Electrochemical Society 162:H597–H603. doi:10.1149/2.0271509jes.
  • Dominguez-Benetton, X., S. Sevda, K. Vanbroekhoven, and D. Pant. 2012. The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews 41:7228–46. doi:10.1039/c2cs35026b.
  • Esteve-Núñez, A., C. Núñez, and D. R. Lovley. 2004. Preferential reduction of Fe(III) over fumarate by geobacter sulfurreducens. Journal of Bacteriology 186:2897. doi:10.1128/JB.186.9.2897-2899.2004.
  • Esteve-Núñez, A., M. Rothermich, M. Sharma, and D. Lovley. 2005. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental Microbiology 7:641–48. doi:10.1111/j.1462-2920.2005.00731.x.
  • Goud, K. R., and S. Venkata Mohan. 2013. Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: Microbial dynamics and bio-catalytic analysis. Bioresource Technology 137:160–70. doi:10.1016/j.biortech.2013.03.059.
  • Guo, X., Y. Zhan, C. Chen, L. Zhao, and S. Guo. 2014. The influence of microbial synergistic and antagonistic effects on the performance of refinery wastewater microbial fuel cells. Journal of Power Sources 251:229–36. doi:10.1016/j.jpowsour.2013.11.066.
  • Hoogers, G. 2002. Fuel cell technology handbook. 1 ed. London: CRC Press.
  • Huggins, T., P. H. Fallgren, S. Jin, and Z. J. Ren. 2013. Energy and Performance Comparison of Microbial Fuel Cell and Conventional Aeration Treating of Wastewater. Journal of Microbial & Biochemical Technology S6:1–5.
  • ICMSF. 2005. Microbial ecology of food commodities. Vol. 2. 2 ed. US: Springer.
  • Ieropoulos, I. A., A. Stinchcombe, I. Gajda, S. Forbes, I. Merino-Jimenez, G. Pasternak, D. Sanchez-Herranz, and J. Greenman. 2016. Pee power urinal – Microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology 2:336–43. doi:10.1039/C5EW00270B.
  • Im, C. H., C. Kim, Y. E. Song, S.-E. Oh, B.-H. Jeon, and J. R. Kim. 2018. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. Chemosphere 191:166–73. doi:10.1016/j.chemosphere.2017.10.004.
  • Kang, J., T. Kim, Y. Tak, J.-H. Lee, and J. Yoon. 2012. Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. Journal of Industrial and Engineering Chemistry 18:800–07. doi:10.1016/j.jiec.2011.10.002.
  • Kracke, F., I. Vassilev, and J. O. Krömer. 2015. Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology 6:575–93. doi:10.3389/fmicb.2015.00575.
  • Lepage, G., G. Perrier, G. Merlin, N. Aryal, and X. Dominguez-Benetton. 2014. Multifactorial evaluation of the electrochemical response of a microbial fuel cell. RSC Advances 4:23815–25. doi:10.1039/C4RA03879G.
  • Li, C., L. Zhang, L. Ding, H. Ren, and H. Cui. 2011. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosensors and Bioelectronics 26:4169–76. doi:10.1016/j.bios.2011.04.018.
  • Liu, T., -Y.-Y. Yu, D. Li, H. Song, X. Yan, and W. N. Chen. 2016. The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells. RSC Advances 6:20317–23. doi:10.1039/C5RA26125B.
  • Liu, Y., F. Harnisch, K. Fricke, R. Sietmann, and U. Schröder. 2008. Rapid and separation-free sandwich immunosensing based on accumulation of microbeads by negative-dielectrophoresis. Biosensors and Bioelectronics 24:1006–11. doi:10.1016/j.bios.2008.08.002.
  • Lobato, J., P. Cañizares, F. J. Fernández, and M. A. Rodrigo. 2012. An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. New Biotechnology 29:415–20. doi:10.1016/j.nbt.2011.09.004.
  • Logan, B. E. 2008. Microbial Fuel Cells. New Jersey: John Wiley & Sons.
  • Lovley, D. R. 2006. Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes. In Ecophysiology and biochemistry, ed. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt, Vol. 2, 3, 635–58. New York, Singapore: Springer-Verlag.
  • Lv, Z., D. Xie, X. Yue, C. Feng, and C. Wei. 2012. Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications. Journal of Power Sources 210:26–31. doi:10.1016/j.jpowsour.2012.02.109.
  • Modestra, J. A., and S. Venkata Mohan. 2014. Bio-electrocatalyzed electron efflux in Gram positive and Gram negative bacteria: An insight into disparity in electron transfer kinetics. RSC Advances 4:34045–55. doi:10.1039/C4RA03489A.
  • Nimje, V. R., C.-Y. Chen, -C.-C. Chen, J.-S. Jean, A. S. Reddy, C.-W. Fan, K.-Y. Pan, H.-T. Liu, and J.-L. Chen. 2009. Stable and high energy generation by a strain of bacillus subtilis in a microbial fuel cell. Journal of Power Sources 190:258–63. doi:10.1016/j.jpowsour.2009.01.019.
  • Pardeshi, P., and A. Mungray. 2014. High flux layer by layer polyelectrolyte FO membrane: Toward enhanced performance for osmotic microbial fuel cell. International Journal of Polymeric Materials and Polymeric Biomaterials 63:595–601. doi:10.1080/00914037.2013.854232.
  • Park, I. H., Y. H. Heo, P. Kim, and K. S. Nahm. 2013. Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode. RSC Advances 3:16665–71. doi:10.1039/c3ra42257g.
  • Pinchuk, G. E., O. V. Geydebrekht, E. A. Hill, J. L. Reed, A. E. Konopka, A. S. Beliaev, and J. K. Fredrickson. 2011. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Applied and Environmental Microbiology 77:8234–40. doi:10.1128/AEM.05382-11.
  • Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology 70:5373–82. doi:10.1128/AEM.70.9.5373-5382.2004.
  • Renslow, R., J. Babauta, A. Kuprat, J. Schenk, C. Ivory, J. Fredrickson, and H. Beyenal. 2013. Modeling biofilms with dual extracellular electron transfer mechanisms. Physical Chemistry Chemical Physics 15:19262–83. doi:10.1039/c3cp53759e.
  • Sanchez, D., D. Jacobs, K. Gregory, J. Huang, Y. Hu, R. Vidic, and M. Yun. 2015. Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 8:1817–29. doi:10.3390/en8031817.
  • Sekar, N., and R. P. Ramasamy. 2013. Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization. Journal of Microbial & Biochemical Technology 5:S6–004.
  • Shi, L., K. Rosso, T. Clarke, D. Richardson, J. Zachara, and J. Fredrickson. 2012. Molecular underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1. Frontiers in Microbiology 3: doi: 10.3389/fmicb.2012.00050.
  • Tiwari, B. R., and M. M. Ghangrekar. 2015. Enhancing electrogenesis by pretreatment of mixed anaerobic sludge to be used as inoculum in microbial fuel cells. Energy & Fuels : an American Chemical Society Journal 29:3518–24. doi:10.1021/ef5028197.
  • Torres, C. I., R. Krajmalnik-Brown, P. Parameswaran, A. K. Marcus, G. Wanger, Y. A. Gorby, and B. E. Rittmann. 2009. Selecting anode-respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization. Environmental Science & Technology 43:9519–24. doi:10.1021/es902165y.
  • Ueoka, N., A. Kouzuma, and K. Watanabe. 2018. Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes. Bioelectrochemistry 124:1–6. doi:10.1016/j.bioelechem.2018.06.008.
  • Venkata Mohan, S., S. Veer Raghavulu, and P. N. Sarma. 2008. Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosensors and Bioelectronics 24:41–47. doi:10.1016/j.bios.2008.03.010.
  • Venkata Mohan, S., G. Velvizhi, J. Annie Modestra, and S. Srikanth. 2014. Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews 40:779–97. doi:10.1016/j.rser.2014.07.109.
  • Wei, L., H. Han, and J. Shen. 2012. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. International Journal of Hydrogen Energy 37:12980–86. doi:10.1016/j.ijhydene.2012.05.068.
  • Wu, D., D. Xing, L. Lu, M. Wei, B. Liu, and N. Ren. 2013. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresource Technology 135:630–34. doi:10.1016/j.biortech.2012.09.106.
  • Yang, T. H., M. V. Coppi, D. R. Lovley, and J. Sun. 2010. Metabolic response of geobacter sulfurreducens towards electron donor/acceptor variation. Microbial Cell Factories 9:90. doi:10.1186/1475-2859-9-90.
  • Yong, X.-Y., D.-Y. Shi, Y.-L. Chen, F. Jiao, X. Lin, J. Zhou, S.-Y. Wang, Y.-C. Yong, Y.-M. Sun, P.-K. OuYang, et al. 2014. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresource Technology 152:220–24. doi:10.1016/j.biortech.2013.10.086.
  • Zhang, C., P. Liang, X. Yang, Y. Jiang, Y. Bian, C. Chen, X. Zhang, and X. Huang. 2016. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosensors and Bioelectronics 81:32–38. doi:10.1016/j.bios.2016.02.051.
  • Zhang, P., J. Liu, Y. Qu, and Y. Feng. 2017. Enhanced Shewanella oneidensis MR-1 anode performance by adding fumarate in microbial fuel cell. Chemical Engineering Journal 328:697–702. doi:10.1016/j.cej.2017.07.008.
  • Zhang, X., A. Prévoteau, R. O. Louro, C. M. Paquete, and K. Rabaey. 2018. Periodic polarization of electroactive biofilms increases current density and charge carriers concentration while modifying biofilm structure. Biosensors and Bioelectronics 121:183–91. doi:10.1016/j.bios.2018.08.045.
  • Zhou, M., H. Wang, D. J. Hassett, and T. Gu. 2013. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology 88:508–18. doi:10.1002/jctb.2013.88.issue-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.