198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy harvesting using exoelectrogenic Shewanella oneidensis bacteria

, &
Pages 3879-3886 | Received 24 Feb 2019, Accepted 19 Jun 2019, Published online: 22 Sep 2019

References

  • Boesen, T., and L. P. Lars Peter Nielsen. 2013. Molecular dissection of bacterial nanowires. ASM 4:e00270–13.
  • Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–85. doi:10.1126/science.1066771.
  • Huang, L., B. Yao, D. Wu, and X. Quan. 2014. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. Journal of Power Sources 259:54–64. doi:10.1016/j.jpowsour.2014.02.061.
  • Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology 30:145–52. doi:10.1016/S0141-0229(01)00478-1.
  • Kumar, V., P. Kumar, A. Nandy, and P. P. Kundu. 2016a. A nanocomposite membrane composed of incorporated nanoalumina within sulfonated PVDF-co-HFP/Nafion blend as separating barrier in a single chambered microbial fuel cell. RSC Advances 6:23571–80. doi:10.1039/C6RA03598A.
  • Kumar, V., S. Mondal, A. Nandy, and P. P. Kundu. 2016b. Analysis of polybenzimidazole and polyvinylpyrrolidone blend membranes as separating barrier in single chambered microbial fuel cells. Biochemical Engineering Journal 11:34–42. doi:10.1016/j.bej.2016.03.003.
  • Kumar, V., A. Nandy, S. Das, M. Salahuddin, and P. P. Kundu. 2015. Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells. Applied Energy 137:310–21. doi:10.1016/j.apenergy.2014.09.073.
  • Lies, D. P., M. E. Hernandez, A. Kappler, R. E. Mielke, J. A. Gralnick, and D. K. Newman. 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilims. Applied and Environmental Microbiology 71l:4414–26. doi:10.1128/AEM.71.8.4414-4426.2005.
  • Min, B., and B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology 38:5809–14. doi:10.1021/es0491026.
  • Myers, C. R., and J. M. Myers. 2002. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Applied and Environmental Microbiology 68:5585–94. doi:10.1128/aem.68.11.5585-5594.2002.
  • Naudet, V., and A. Revil. 2005. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophysical Research Letters 32:L11405. doi:10.1029/2005GL022735.
  • Naudet, V., A. Revil, J.-Y. Bottero, and P. Begassat. 2003. Relationship between self-potential (SP) signals and redox conditions in contaminated ground water. Geophysical Research Letters 30:2091. doi:10.1029/2003GL018096.
  • Ntarlagiannis, D., E. A. Atekwana, E. A. Hill, and Y. Gorby. 2007. Microbial nanowires: Is the subsurface “hardwired”? Geophysical Research Letters 34:L17305. doi:10.1029/2007GL030426.
  • Parameswaran, H. S., P. A. Kato-Marcus Torres, and B. E. Rittman. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research 42:1501–10. doi:10.1016/j.watres.2007.10.036.
  • Park, D. H., and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology 2000 (66):1292–97. doi:10.1128/AEM.66.4.1292-1297.2000.
  • Park, Y. H., G. Smith, and E. Park. 2016. Mediator-less microbial fuel cell employing Shewanella oneidensis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (12):1779–84. doi:10.1080/15567036.2014.969815.
  • Pirbadian, S., S. E. Barchinger, K. M. Man Leung, H. S. Byun, Y. Jangir, R. A. Bouhenni, S. B. Reed, M. F. Romine, D. A. Saffarini, L. Shi, et al. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences 111:12883–88. doi:10.1073/pnas.1410551111.
  • Reguera, G., K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098–101. doi:10.1038/nature03661.
  • Wang, H., and Z. J. Ren. 2014. Bioelectrochemical metal recovery from wastewater: A review. Water Research 66:219–32. doi:10.1016/j.watres.2014.08.018.
  • Wu, X., Y. Qiao, Z. Shi, and C. M. Li. 2018. Enhancement of interfacial bioelectrocatalysis in Shewanella microbial fuel cells by a hierarchical porous carbon–Silica composite derived from distiller’s grains. Sustainable Energy & Fuels 2:655–62. doi:10.1039/C7SE00560A.
  • Wu, X., X. Zhu, T. Song, L. Zhang, L. H. Jia, and P. Wei. 2015. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell. Comparative Biochemistry and Physiology. A, Comparative Physiology 180;185–191: doi: 10.1016/s0300-9629(76)80005-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.