2,035
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Prediction of specific gravity of Afghan coal based on conventional coal properties by stepwise regression and random forest

ORCID Icon
Pages 4323-4334 | Received 28 May 2019, Accepted 07 Sep 2019, Published online: 22 Sep 2019

References

  • ASTM D3172. 2013. Standard Practice for Proximate Analysis of Coal and Coke, 1–2. West Conshohocken, PA 19428-2959. United States: ASTM International.
  • ASTM D3176. 2015. Standard Practice for Ultimate Analysis of Coal and Coke, 1–2. United States: ASTM International.
  • Chehreh Chelgani, S., B. Hart, W. C. Grady, and J. C. Hower. 2011c. Study relationship between inorganic and organic coal analysis with gross calorific value by multiple regression and ANFIS. International Journal of Coal Preparation and Utilization 31 (1):9–19. doi:10.1080/19392699.2010.527876.
  • Chehreh Chelgani, S., F. Dehghan, and J. C. Hower. 2011a. Estimation of some coal parameters depending on petrographic and inorganic analyses by using Genetic algorithm and adaptive neuro-fuzzy inference systems. Energy Exploration & Exploitation 29 (4):479–94. doi:10.1260/0144-5987.29.4.479.
  • Chehreh Chelgani, S., J. C. Hower, and B. Hart. 2011b. Estimation of free-swelling index based on coal analysis using multivariable regression and artificial neural network. Fuel Processing Technology 92 (3):349–55. doi:10.1016/j.fuproc.2010.09.027.
  • Chehreh Chelgani, S., J. C. Hower, E. Jorjani, S. Mesroghli, and A. H. Bagherieh. 2008. Prediction of coal grindability based on petrography, proximate and ultimate analysis with multiple regression and artificial neural network models. Fuel Processing Technology 89:13–20. doi:10.1016/j.fuproc.2007.06.004.
  • Chehreh Chelgani, S., and S. Makaremi. 2013. Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods. Fuel Processing Technology 110:79–85. doi:10.1016/j.fuproc.2012.11.005.
  • Chehreh Chelgani, S., and S. S. Matin. 2018. Study the relationship between coal properties with Gieseler plasticity parameters by random forest. International Journal of Oil, Gas and Coal Technology 17 (1):113–27. doi:10.1504/IJOGCT.2018.089345.
  • Chehreh Chelgani, S., S. S. Matin, and J. C. Hower. 2016b. Explaining relationships between coke quality index and coal properties by Random Forest method. Fuel 182:754–60. doi:10.1016/j.fuel.2016.06.034.
  • Chehreh Chelgani, S., S. S. Matin, and S. Makaremi. 2016a. Modeling of free swelling index based on variable importance measurements of parent coal properties by random forest method. Measurement 94:416–22. doi:10.1016/j.measurement.2016.07.070.
  • Doebrich, J. L., R. Ronald, W. Ludington, P. G. Chirico, C. J. Wandrey, R. G. Bohannon, G. J. Orris, J. D. Bliss, A. Wasy, and M. O. Younusi. 2006. Geologic and Mineral Resource Map of Afghanistan. U.S. Geological Survey 1–2.
  • Elliott, M. A., Editor. 1981. Chemistry of Coal Utilization. Hoboken, NJ: Wiley.
  • Given, P. H., and R. F. Yarzab. 1978. In analytical methods for coal and coal products, Vol. 2. In Editor. J. C. Karr, 20. San Diego, CA, Chap: Academic Press.
  • Hackley, P. C., J. R. SanFilipo, G. P. Azizi, P. A. Davis, and S. W. Starratt. 2010. Organic petrology of subbituminous carbonaceous shale samples from Chalāw, Kabul Province, Afghanistan: Considerations for paleoenvironment and energy resource potential. International Journal of Coal Geology 81:269–80. doi:10.1016/j.coal.2009.12.007.
  • Hadavandi, E., and S. Chehreh Chelgani. 2019. Estimation of coking indexes based on parental coal properties by variable importance measurement and boosted-support vector regression method. Measurement 135:306–11. doi:10.1016/j.measurement.2018.11.068.
  • Hare, T. M., P. A. Davis, D. Nigh, J. A. Skinner, J. R. SanFilipo, K. S. Bolm, C. M. Fortezzo, D. Galuszka, W. R. Stettner, S. Sultani, et al. 2008. Data series 317-2008. Large-scale digital geologic map databases and reports of the North Coal district in Afghanistan1-20. Reston, Virginia: U.S. Geological Survey.
  • Jacob, H. 1961. Ergebnisse der untersuchung von kohlenproben aus verschiedenen lagerstatten Afghanistan [Translation: Results of the examination of coal assays from various beds in Afghanistan]: Bundesanstalt für Bodenforschung, Hannover, Germany, 95 p, 5 Plates, (in German) [AGS no. 129].
  • Jorjani, E., J. C. Hower, S. Chehreh Chelgani, M. A. Shirazi, and S. Mesroghli. 2008. Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals. Fuel 87 (6):707–13. doi:10.1016/j.fuel.2007.05.044.
  • Lopamudra, P., A. K. Sahoo, A. Tripathy, and A. K. Sahu. 2012. Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal. Fuel 97:151–56. doi:10.1016/j.fuel.2012.02.018.
  • Matin, S. S., J. C. Hower, L. Farahzadi, and S. Chehreh Chelgani. 2016. Explaining relationships among various coal analyses with coal grindability index by Random Forest. International Journal of Mineral Processing 155:140–46. doi:10.1016/j.minpro.2016.08.015.
  • Matin, S. S., L. Farahzadi, S. Makaremi, S. Chehreh Chelgani, and G. Sattari. 2018. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest. Applied Soft Computing 70:980–87. doi:10.1016/j.asoc.2017.06.030.
  • Matin, S. S., and S. Chehreh Chelgani. 2016. Estimation of coal gross calorific value based on various analyses by random forest method. Fuel 177:274–78. doi:10.1016/j.fuel.2016.03.031.
  • Mohanty, M. K., H. Wang, H. Akbari, and J. C. Hirschi 2012. In-plant demonstration of a low cost automation system for coal spirals. Final technical report February 1, 2012, through July 31, 2013. doi:10.1094/PDIS-11-11-0999-PDN
  • Nazari, S., S. Chehreh Chelgani, S. Z. Shafaei, B. Shahbazi, S. S. Matin, and M. Gharabaghi. 2018. Flotation of coarse particles by hydrodynamic cavitation generated in the presence of conventional reagents. Separation and Purification Technology 220:61–68. doi:10.1016/j.seppur.2019.03.033.
  • Rong, R. X., and G. J. Lyman. 1992. The effect of jigging time and air cycle on bed stratification in a pilot scale Baum jig. Fuel 71 (1):115–23. doi:10.1016/0016-2361(92)90201-X.
  • SanFilipo, J. 2005. Assessing the coal resources of Afghanistan, prepared under the auspices of the U.S. Agency for International Development S. department of the interior fact sheet 2005–3073, S. Geological Survey paper June
  • Shahbazi, B., S. Chehreh Chelgani, and S. S. Matin. 2017. Prediction of froth flotation responses based on various conditioning parameters by Random Forest method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529:936–41. doi:10.1016/j.colsurfa.2017.07.013.
  • Siebdrat, H., and D. Weippert. 1963. Zwischenbericht über die Geologischen Arbeiten zum Kohlengebiet von Darra-i-Suf mit Vorschlagen für Bergbauliche Massnahmen [Translation: Interim report on the geologic workings in the Darra-i-Suf coal region with recommendations for mining actions]. Deutsche Geologische Mission, 29. 16 Plates (in German) [AGS no. 130].
  • Speight, J. G. 1994. The chemistry and technology of coal. 2nd. Marcel Dekker, New York: CRC Press.
  • Speight, J. G. 2005. Handbook of Coal Analysis. Hoboken, New Jersey: A john wiley & sons, inc., publication.
  • SPSS. 2004. Version 13. Help Files. SPSS Inc.
  • Tewalt, S. J., H. E. Belkin, J. R. SanFilipo, M. D. Merrill, C. A. Palmer, P. D. Warwick, A. W. Karlsen, R. B. Finkelman, and A. J. Park. 2010. Chemical analyses in the World coal quality inventory, Version 1. Reston, Virginia: U.S. Geological Survey.
  • Wnuk, C. 2016. Coal resource potential of Afghanistan. International Geology Review 58 (3):321–41. doi:10.1080/00206814.2015.1071209.
  • Wood, G. H., J. T. M. Kehn, M. D. Carter, and C. C. William. 1983. Coal resource classification system of the U.S. Geological Survey 65.