172
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Potassium fluoride improving the ignition and combustion performance of micron-sized aluminum particles in high temperature water vapor

, , , &
Pages 4335-4346 | Received 17 Jun 2019, Accepted 07 Sep 2019, Published online: 29 Sep 2019

References

  • Chen, Y., D. R. Guildenbecher, K. N. G. Hoffmeister, M. A. Cooper, H. L. Stauffacher, and M. S. Oliver. 2017. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry. Combustion and Flame 182:225–37. doi:10.1016/j.combustflame.2017.04.016.
  • Elitzur, S., V. Rosenband, and A. Gany. 2015. Electric energy storage using aluminum and water for hydrogen production on demand. International Journal of Applied Science and Technology 5 (4):112–16.
  • Foote, J., J. Lineberry, B. Thompson, and B. Winkelman 1996. Investigation of aluminum particle combustion for underwater propulsion applications. 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Lake Buena Vista, United States of America, July.
  • Gao, M., X. Guo, M. Zou, and R. Yang. 2015. Studies on combustion of aluminum-magnesium alloy hydro-reactive metal fuel. Journal of Propulsion Technology 36 (4):629–34.
  • Huang, H., M. Zou, X. Guo, R. Yang, and Y. Li. 2013a. Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet. Combustion, Explosion, and Shock Waves 49 (5):541–47. doi:10.1134/S0010508213050055.
  • Huang, H., M. Zou, X. Guo, R. Yang, and Y. Li. 2015. Reactions characteristics of different particles in heated steam. Combustion Science and Technology 187 (5):797–806. doi:10.1080/00102202.2014.973950.
  • Huang, X., T. Gao, X. Pan, D. Wei, C. Lv, L. Qin, and Y. Huang. 2013b. A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. Journal of Power Sources 229:133–40. doi:10.1016/j.jpowsour.2012.12.016.
  • Ingenito, A., and C. Bruno. 2004. Using aluminum for space propulsion. Journal of Propulsion and Power 20 (6):1056–63. doi:10.2514/1.5132.
  • Ivanov, V. G., O. V. Gavrilyuk, O. V. Glazkov, and M. N. Safronov. 2000. Specific features of the reaction between ultrafine aluminum and water in a combustion regime. Combustion, Explosion, and Shock Waves 36 (2):213–19. doi:10.1007/BF02699363.
  • Ivanov, V. G., S. N. Leonov, G. L. Savinov, O. V. Gavrilyuk, and O. V. Glazkov. 1994. Combustion of mixtures of ultra-disperse aluminum and gel-like water. Combustion, Explosion, and Shock Waves 30 (4):569–70. doi:10.1007/BF00790170.
  • Jiang, Z., S. Li, F. Zhao, Z. Liu, C. Yin, Y. Luo, and S. Li. 2004. Effect of nano aluminum and nickel particles on the combustion properties of composite propellant. Journal of Propulsion Technology 25 (4):368–72.
  • Kuehl, D. K. 1965. Ignition and combustion of aluminum and beryllium. AIAA Journal 3 (12):2239–47. doi:10.2514/3.3352.
  • Li, F., W. Zhang, W. Zhang, S. Yang, and Z. Xia. 2005. A preliminary research on the performance of hydroreactive aluminum metal fuel. Journal of National University of Defense Technology 27 (4):4–7.
  • Lu, H., Z. Zeng, T. Hou, and R. Zhang. 2007. Thermo-reaction properties of nanometer aluminum powders. Journal of Synthetic Crystals 36 (3):638–641,645.
  • Makhov, M. N., M. F. Gogulya, A. Y. Dolgoborodov, M. A. Brazhnikov, V. I. Arkhipov, and V. I. Pepekin. 2004. Acceleration ability and heat of explosive decomposition of aluminized explosives. Combustion, Explosion, and Shock Waves 40 (4):458 466. doi:10.1023/B:CESW.0000033569.77449.d9.
  • Milani, M., L. Montorsi, F. Paltrinieri, and M. Stefani. 2014. Experimental and numerical analysis of the combustor for a cogeneration system based on the aluminum/water reaction. Energy Conversion and Management 87:1291–96. doi:10.1016/j.enconman.2014.03.027.
  • Risha, G., T. Connell, R. Yetter, V. Yang, and S. Son 2009. Aluminum-ice (ALICE) propellants for hydrogen generation and propulsion. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, United States of America, August.
  • Stamatis, D., E. L. Dreizin, and K. Higa. 2011. Thermal initiation of Al-MoO3 nanocomposite materials prepared by different methods. Journal of Propulsion and Power 27 (5):1079–87. doi:10.2514/1.B34179.
  • Stamatis, D., Z. Jiang, V. K. Hoffmann, M. Schoenitz, E. L. Dreizin, and F. Dense. 2008. Aluminum-rich Al-CuO nanocomposite particles for energetic formulations. Combustion Science and Technology 181 (1):97–116. doi:10.1080/00102200802363294.
  • Sundaram, D. S., V. Yang, T. Connell, G. Risha, R. Yetter, and G. Young 2011. Combustion of aluminum, aluminum hydride, and ice mixtures. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, United States of America, January.
  • Sundaram, D. S., V. Yang, Y. Huang, G. A. Risha, and R. A. Yetter. 2013. Effects of particle size and pressure on combustion of nano-aluminum particles and liquid water. Combustion and Flame 160:2251–59. doi:10.1016/j.combustflame.2013.04.025.
  • Trunov, M. A., M. Schoenitz, and E. L. Dreizin. 2006. Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles. Combustion Theory and Modelling 10 (4):603–23. doi:10.1080/13647830600578506.
  • Trunov, M. A., M. Schoenitz, X. Zhu, and E. L. Dreizin. 2005. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combustion and Flame 140 (4):310–18. doi:10.1016/j.combustflame.2004.10.010.
  • Vasilev, A. V., V. V. Gorbunov, and A. A. Shidlovskii 1974. The effect of certain additives on critical diameter and combustion rates of mixtures of aluminum with gelled water. Report AD-A000210. Charlottesville, VA: Army Foreign Science and Technology Center.
  • Vlaskin, M. S., E. I. Shkolnikov, A. V. Lisicyn, A. V. Bersh, and A. Z. Zhuk. 2010. Computational and experimental investigation on thermodynamics of the reactor of aluminum oxidation in saturated wet steam. International Journal of Hydrogen Energy 35 (5):1888–94. doi:10.1016/j.ijhydene.2009.12.061.
  • Wang, J., J. Liu, Y. Zhou, J. Wang, T. Xu, W. Yang, and J. Zhou. 2017. Thermal reaction characterization of micron-sized aluminum powders in air. Chinese Journal of Energetic Materials 25 (8):667–74.
  • Xiao, F., J. Li, X. Zhou, and R. Yang. 2018. Preparation of mechanically activated aluminum-rich Al-Co3O4, particles and their thermal properties and reactivity with water steam at high temperature. Combustion Science and Technology 190:1–15.
  • Xu, N., Z. Yang, Z. Qiu, and T. Cheng. 1999. Kinetic model of dissolution of alumina in molten cryolite. Journal of Northeast Normal University (natural Science) 20 (3):315–18.
  • Yatsenko, S. P., V. M. Skachkov, and V. G. Shevchenko. 2011. Production of hydrogen by decomposition of water with activated aluminum. Russian Journal of Applied Chemistry 84 (1):36–39. doi:10.1134/S1070427211010058.
  • Zhao, L. 2012. The activity enhancement and composite technique of the reaction of aluminum-magnesium metal particles with water. Nanjing, China: Nanjing University of Science and Technology.
  • Zhao, Z., X. Chen, and M. Hao. 2011. Hydrogen generation by splitting water with Al-Ca alloy. Energy 36 (5):2782–87. doi:10.1016/j.energy.2011.02.018.
  • Zhu, B., F. Li, Y. Sun, Q. Wang, Y. Wu, and Z. Zhu. 2017a. The effects of additives on the combustion characteristics of aluminum particles in steam. RSC Advances 7:5725–32. doi:10.1039/C6RA24911F.
  • Zhu, B., F. Li, Y. Sun, Y. Wu, Q. Wang, Q. Wang, and W. Hang. 2017b. The effects of different additives on the ignition and combustion characteristics of micron-sized aluminum powder in steam. Energy & Fuels 31 (8):8674–84. doi:10.1021/acs.energyfuels.7b01045.
  • Zou, M., R. Yang, X. Guo, C. Cao, and J. Li. 2007. Advances in aluminum/water propellant. Chinese Journal of Energetic Materials 15 (4):421–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.