192
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of Ni-Mg@HC catalyst derived from sugarcane bagasse and its application for producing syngas via CO2 dry reforming

, ORCID Icon, , , &
Pages 4347-4360 | Received 20 Jun 2019, Accepted 07 Sep 2019, Published online: 25 Sep 2019

References

  • Al-Fatesh, A., S. K. Singh, G. S. Kanade, H. Atia, A. H. Fakeeha, A. A. Ibrahim, A. M. El-Toni, and N. K. Labhasetwar. 2018a. Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam-CO2 reforming and oxy-CO2 reforming of CH4. International Journal of Hydrogen Energy 43 (27):12069–80. doi:10.1016/j.ijhydene.2018.04.152.
  • Al-Fatesh, A. S., Y. Arafat, A. A. Ibrahim, H. Atia, A. H. Fakeeha, U. Armbruster, A. E. Abasaeed, and F. Frusteri. 2018b. Evaluation of Co-Ni/Sc-SBA-15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Applied Catalysis A: General 567:102–11. doi:10.1016/j.apcata.2018.09.012.
  • Bao, Z., Y. Lu, J. Han, Y. Li, and F. Yu. 2015. Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Applied Catalysis A: General 491:116–26. doi:10.1016/j.apcata.2014.12.005.
  • Bouarab, R., O. Akdim, A. Auroux, O. Cherifi, and C. Mirodatos. 2004. Effect of MgO additive on catalytic properties of Co/SiO2 in the dry reforming of methane. Applied Catalysis A: General 264 (2):161–68. doi:10.1016/j.apcata.2003.12.039.
  • Bradford, M. C. J., and M. A. Vannice. 1996. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Applied Catalysis A: General 142 (1):73–96. doi:10.1016/0926-860X(96)00065-8.
  • Chen, C., X. Wang, H. Huang, X. Zou, F. Gu, F. Su, and X. Lu. 2019. Synthesis of mesoporous Ni-La-Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Processing Technology 185:56–67. doi:10.1016/j.fuproc.2018.11.017.
  • Dou, J., Z. Bao, and F. Yu. 2018. Mesoporous Ni(OH)2/CeNixOy composites derived Ni/CeNixOy catalysts for dry reforming of methane. ChemCatChem 10 (1):250–58. doi:10.1002/cctc.201701073.
  • Figueira, C. E., P. F. Moreira, R. Giudici, R. M. B. Alves, and M. Schmal. 2018. Nanoparticles of Ce, Sr, Co in and out the multi-walled carbon nanotubes applied for dry reforming of methane. Applied Catalysis A: General 550:297–307. doi:10.1016/j.apcata.2017.11.019.
  • Gao, H., Z. Yao, Y. Shi, and S. Wang. 2018. Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catalysis Science & Technology 8 (3):697–701. doi:10.1039/c7cy02506h.
  • Guo, F., J.-Q. Xu, and W. Chu. 2015. CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catal Today 256:124–29. doi:10.1016/j.cattod.2015.02.036.
  • Han, J., W. Li, D. Liu, L. Qin, W. Chen, and F. Xing. 2018. Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and Applied Pyrolysis 129:1–5. doi:10.1016/j.jaap.2017.12.016.
  • Han, J., Y. Liang, L. Qin, B. Zhao, H. Wang, and Y. Wang. 2019a. Ni@HC core-shell structured catalysts for dry reforming of methane and carbon dioxide. Catalysis Letters. doi:10.1007/s10562-019-02889-2.
  • Han, J., Y. Zhan, J. Street, F. To, and F. Yu. 2017. Natural gas reforming of carbon dioxide for syngas over Ni-Ce-Al catalysts. International Journal of Hydrogen Energy 42 (29):18364–74. doi:10.1016/j.ijhydene.2017.04.131.
  • Han, J., L. Zhang, B. Zhao, L. Qin, Y. Wang, and F. Xing. 2019b. The N-doped activated carbon derived from sugarcane bagasse for CO2 adsorption. Industrial Crops and Products 128:290–97. doi:10.1016/j.indcrop.2018.11.028.
  • Jin, L., B. Ma, S. Zhao, X. He, Y. Li, H. Hu, and Z. Lei. 2018. Ni/MgOAl2O3 catalyst derived from modified [Ni,Mg,Al]-LDH with NaOH for CO2 reforming of methane. International Journal of Hydrogen Energy 43 (5):2689–98. doi:10.1016/j.ijhydene.2017.12.087.
  • Khajenoori, M., M. Rezaei, and F. Meshkani. 2015. Dry reforming over CeO2-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH4/CO2 molar ratio. Journal of Industrial and Engineering Chemistry 21:717–22. doi:10.1016/j.jiec.2014.03.043.
  • Khavarian, M., S.-P. Chai, and A. R. Mohamed. 2014. Direct use of as-synthesized multi-walled carbon nanotubes for carbon dioxide reforming of methane for producing synthesis gas. Chemical Engineering Journal 257:200–08. doi:10.1016/j.cej.2014.05.079.
  • Li, J., J. Li, and Q. Zhu. 2018. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst. Chinese Journal of Chemical Engineering 26 (11):2344–50. doi:10.1016/j.cjche.2018.05.025.
  • Li, J., J. Li, Q. Zhu, and H. Li. 2018. Magnetic field acceleration of CO2 reforming of methane over novel hierarchical Co/MgO catalyst in fluidized bed reactor. Chemical Engineering Journal 350:496–506. doi:10.1016/j.cej.2018.05.034.
  • Li, L., L.-M. Zhang, Y.-H. Zhang, and J.-L. Li. 2015. Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide. Journal of Fuel Chemistry and Technology 43 (3):315–22. doi:10.1016/S1872-5813(15)30007-4.
  • Li, X., G. Zhu, S. Qi, J. Huang, and B. Yang. 2014. Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports. Applied Energy 130:846–52. doi:10.1016/j.apenergy.2014.01.056.
  • Lu, Y., S. Jiang, S. Wang, Y. Zhao, and X. Ma. 2018. Effect of the addition of Ce and Zr over a flower-like NiO-MgO (111) solid solution for CO2 reforming of methane. Journal of CO2 Utilization 26:123–32. doi:10.1016/j.jcou.2018.05.007.
  • Méndez, A., G. Gascó, B. Ruiz, and E. Fuente. 2019. Hydrochars from industrial macroalgae “Gelidium sesquipedale” biomass wastes. Bioresource Technology 275:386–93. doi:10.1016/j.biortech.2018.12.074.
  • Mousavi, S. M., F. Meshkani, and M. Rezaei. 2018. Preparation of nanocrystalline Zr, La and Mg-promoted 10% Ni/Ce0.95Mn0.05O2 catalysts for syngas production via dry reforming reaction. International Journal of Hydrogen Energy 43 (13):6532–38. doi:10.1016/j.ijhydene.2018.01.172.
  • Mustafa, B. G., M. H. M. Kiah, A. Irshad, G. E. Andrews, H. N. Phylaktou, H. Li, and B. M. Gibbs. 2019. Rich biomass combustion: Gaseous and particle number emissions. Fuel 248:221–31. doi:10.1016/j.fuel.2019.03.027.
  • Nie, C., X. Yang, N. K. Niazi, X. Xu, Y. Wen, J. Rinklebe, Y. S. Ok, S. Xu, and H. Wang. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 200:274–82. doi:10.1016/j.chemosphere.2018.02.134.
  • Perez-Lopez, O. W., A. Senger, N. R. Marcilio, and M. A. Lansarin. 2006. Effect of composition and thermal pretreatment on properties of Ni-Mg-Al catalysts for CO2 reforming of methane. Applied Catalysis A: General 303 (2):234–44. doi:10.1016/j.apcata.2006.02.024.
  • Ramezani, Y., F. Meshkani, and M. Rezaei. 2018. Promotional effect of Mg in trimetallic nickel-manganese-magnesium nanocrystalline catalysts in CO2 reforming of methane. International Journal of Hydrogen Energy 43 (49):22347–56. doi:10.1016/j.ijhydene.2018.09.222.
  • Ren, P., and Z. Zhao. 2019. Unexpected coke-resistant stability in steam-CO2 dual reforming of methane over the robust Mo2C-Ni/ZrO2 catalyst. Catalysis Communications 119:71–75. doi:10.1016/j.catcom.2018.10.024.
  • Ruckenstein, E., and H. Y. Wang. 2000. Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts. Applied Catalysis A: General 204 (2):257–63. doi:10.1016/S0926-860X(00)00674-8.
  • Setiabudi, H. D., C. C. Chong, S. M. Abed, L. P. Teh, and S. Y. Chin. 2018. Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonic-assisted impregnation method in CO2 reforming of CH4 over Ni-Ce/SBA-15. Journal of Environmental Chemical Engineering 6 (1):745–53. doi:10.1016/j.jece.2018.01.001.
  • Wang, H., J. Han, Z. Bo, L. Qin, Y. Wang, and F. Yu. 2019. Non-thermal plasma enhanced dry reforming of CH4 with CO2 over activated carbon supported Ni catalysts. Molecular Catalysis 475:110486. doi:10.1016/j.mcat.2019.110486.
  • Wang, T., Y. Zhai, Y. Zhu, C. Li, and G. Zeng. 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews 90:223–47. doi:10.1016/j.rser.2018.03.071.
  • Xu, L., F. Wang, M. Chen, X. Fan, H. Yang, D. Nie, and L. Qi. 2017. Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4. Journal of CO2 Utilization 18:1–14. doi:10.1016/j.jcou.2017.01.003.
  • Xu, L., X. Zhang, M. Chen, L. Qi, D. Nie, and Y. Ma. 2016. Facilely fabricating Mg, Ca modified Co based ordered mesoporous catalysts for CO2 reforming of CH4: The effects of basic modifiers. International Journal of Hydrogen Energy 41 (39):17348–60. doi:10.1016/j.ijhydene.2016.08.013.
  • Yahyavi, S. R., M. Haghighi, S. Shafiei, M. Abdollahifar, and F. Rahmani. 2015. Ultrasound-assisted synthesis and physicochemical characterization of Ni-Co/Al2O3-MgO nanocatalysts enhanced by different amounts of MgO used for CH4/CO2 reforming. Energy Conversion and Management 97:273–81. doi:10.1016/j.enconman.2015.03.064.
  • Yu, M., Y.-A. Zhu, Y. Lu, G. Tong, K. Zhu, and X. Zhou. 2015. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Applied Catalysis B: Environmental 165:43–56. doi:10.1016/j.apcatb.2014.09.066.
  • Zhan, Y., J. Han, Z. Bao, B. Cao, Y. Li, J. Street, and F. Yu. 2017. Biogas reforming of carbon dioxide to syngas production over Ni-Mg-Al catalysts. Molecular Catalysis 436:248–58. doi:10.1016/j.mcat.2017.04.032.
  • Zhang, F., Z. Song, J. Zhu, L. Liu, J. Sun, X. Zhao, Y. Mao, and W. Wang. 2018. Process of CH4-CO2 reforming over Fe/SiC catalyst under microwave irradiation. The Science of the Total Environment 639:1148–55. doi:10.1016/j.scitotenv.2018.04.364.
  • Zhou, L., L. R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J. L. Hazemann, J. Li, N. Wei, D. Gary, et al. 2017. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Applied Catalysis B: Environmental 208:44–59. doi:10.1016/j.apcatb.2017.02.052.
  • Zhu, J., X. Peng, L. Yao, X. Deng, H. Dong, D. Tong, and C. Hu. 2013. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience. International Journal of Hydrogen Energy 38 (1):117–26. doi:10.1016/j.ijhydene.2012.07.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.