49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A weight coefficient distribution method based on quantile impact value for modeling low calorific value in coal-fired power plants

, &
Pages 4682-4696 | Received 20 Dec 2018, Accepted 01 Jul 2019, Published online: 27 Sep 2019

References

  • Akay, M. F. 2009. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications 36 (2):3240–47. doi:10.1016/j.eswa.2008.01.009.
  • Akkaya, A. V. 2009. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology 90 (2):165–70. doi:10.1016/j.fuproc.2008.08.016.
  • Amjady, N., and F. Keynia. 2009. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique. Energy Conversion and Management 50 (12):2976–82. doi:10.1016/j.enconman.2009.07.016.
  • Andrés, J. M., and M. T. Bona. 2006. ASTM clustering for improving coal analysis by near-infrared spectroscopy. Talanta 70 (4):711–19. doi:10.1016/j.talanta.2006.05.034.
  • Bae, C., W.-C. Yeh, Y. Y. Chung, and S.-L. Liu. 2010. Feature selection with intelligent dynamic swarm and rough set. Expert Systems with Applications 37 (10):7026–32. doi:10.1016/j.eswa.2010.03.016.
  • Bona, M. T., and J. M. Andrés. 2007. Coal analysis by diffuse reflectance near-infrared spectroscopy: Hierarchical cluster and linear discriminant analysis. Talanta 72 (4):1423–31. doi:10.1016/j.talanta.2007.01.050.
  • Chelgani, S. C., J. C. Hower, E. Jorjani, S. Mesroghli, and A. H. Bagherieh. 2008. Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models. Fuel Processing Technology 89 (1):13–20. doi:10.1016/j.fuproc.2007.06.004.
  • Cheng, Y. T., L. J. Xu, X. L. Li, and Z. S. Guo. 2012. Online coal calorific value prediction from mutiband coal/air combustion radiation characteristics. In 8th IEEE International Symposium on Instrumentation and Control Technology (ISICT), 309–13. London, UK: IEEE.
  • Dombi, G. W., P. Nandi, J. M. Saxe, A. M. Ledgerwood, and C. E. Lucas. 1995. Prediction of rib fracture injury outcome by an artificial neural network. The Journal of Trauma 39 (5):915–21. doi:10.1097/00005373-199511000-00016.
  • Feng, Q., J. Zhang, X. Zhang, and S. Wen. 2015. Proximate analysis based prediction of gross calorific value of coals: A comparison of support vector machine, alternating conditional expectation and artificial neural network. Fuel Processing Technology 129:120–29. doi:10.1016/j.fuproc.2014.09.001.
  • Haryono, D., A. Desiani, M. Huda, W. P. Taruno, M. R. Baidillah, and I. Maulana. 2015. Characterization of various types coal using capacitance measurement technique. Advanced Materials Research 1112:506–09. doi:10.4028/www.scientific.net/AMR.1112.506.
  • Jiang, R., W. Qian, and Z. Zhou. 2012. Variable selection and coefficient estimation via composite quantile regression with randomly censored data. Statistics & Probability Letters 82 (2):308–17. doi:10.1016/j.spl.2011.10.017.
  • Kobayashi, Y., H. Oda, and C. Yokokawa. 1986. Temperature-dependence of propagation velocity of ultrasonic wave in coals. Fuel 65 (2):177–81. doi:10.1016/0016-2361(86)90004-9.
  • Koenker, R. 2005. Quantile regression. New York: Cambridge University Press.
  • Koenker, R., and G. Bassett. 1978. Regression quantiles. Econometrica 46 (1):33–50. doi:10.2307/1913643.
  • Kong, E., and Y. Xia. 2014. An adaptive composite quantile approach to dimension reduction. Annals of Statistics 42 (4):1657–88. doi:10.1214/14-AOS1242.
  • Li, H. Z., W. Tao, T. Gao, H. Li, Y. H. Lu, and Z. M. Su. 2012. Improving the accuracy of DFT calculation for homolysis bond dissociation energies of Y-NO bond via back propagation neural network based on mean impact value. Chemical Journal of Chinese Universities 33 (2):346–52.
  • Li, P., Y. Xiong, D. Yu, and X. Sun. 2005. Prediction of grindability with multivariable regression and neural network in Chinese coal. Fuel 84 (18):2384–88. doi:10.1016/j.fuel.2005.04.016.
  • Lim, C. S., and D. A. Abernethy. 2005. On-line coal analysis using fast neutron-induced gamma-rays. Applied Radiation and Isotopes : Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 63 (5):697–704. doi:10.1016/j.apradiso.2005.05.021.
  • Liu, L., Y. Zhou, H. Zhao, and Z. Shen 2008. On-line measurement method of water in coal based on microwave heating. Control Conference. Kunming, China : IEEE.
  • Lv, Y., R. Zhang, W. Zhao, and J. Liu. 2014. Quantile regression and variable selection for the single-index model. Journal of Applied Statistics 41 (7):1565–77. doi:10.1080/02664763.2014.881786.
  • Majumder, A., R. Jain, P. Banerjee, and J. Barnwal. 2008. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 87 (13):3077–81. doi:10.1016/j.fuel.2008.04.008.
  • Matin, S. S., and S. C. Chelgani. 2016. Estimation of coal gross calorific value based on various analyses by random forest method. Fuel 177:274–78. doi:10.1016/j.fuel.2016.03.031.
  • Mesroghli, S., E. Jorjani, and S. Chehreh Chelgani. 2009. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. International Journal of Coal Geology 79 (1–2):49–54. doi:10.1016/j.coal.2009.04.002.
  • Patel, S. U., B. Jeevan Kumar, Y. P. Badhe, B. K. Sharma, S. Saha, S. Biswas, A. Chaudhury, S. S. Tambe, and B. D. Kulkarni. 2007. Estimation of gross calorific value of coals using artificial neural networks. Fuel 86 (3):334–44. doi:10.1016/j.fuel.2006.07.036.
  • Qi, M., Z. Fu, and F. Chen. 2016. Research on a feature selection method based on median impact value for modeling in thermal power plants. Applied Thermal Engineering 94:472–77. doi:10.1016/j.applthermaleng.2015.10.104.
  • Shi, H., Y. Lu, J. Du, W. Du, X. Ye, X. Yu, J. Ma, J. Cheng, Y. Gao, Y. Cao, et al. 2012. Application of back propagation artificial neural network on genetic variants in adiponectin ADIPOQ, peroxisome proliferator-activated receptor-γ, and retinoid X receptor-α genes and type 2 diabetes risk in a chinese han population. Diabetes Technology & Therapeutics 14 (3):293–300. doi:10.1089/dia.2011.0071.
  • Sun, K. L., R. R. Gu, and H. P. Zhou. 2013. Prediction of coal calorific value based on a hybrid linear regression and support vector machine model. In Proceedings of The Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), edited by Z. Yin, L. Pan, and X. Fang, Vol. 212, 883–90. Germany: Springer, Berlin, Heidelberg.
  • Wang, Q. W., B. Y. Li, and J. L. Hu. 2009. Feature selection for human resource selection based on affinity propagation and SVM sensitivity analysis. In World congress on Nature & Biologically Inspired Computing (NaBIC), 31–36. Coimbatore, India: IEEE.
  • Wei, M. H., Q. L. Zhou, Z. J. Yang, and J. G. Zheng. 2012. Prediction model of agricultural product’s price based on the improved BP neural network. In 2012 7th International Conference on Computer Science & Education (ICCSE), 613–17. Melbourne, VIC, Australia: IEEE.
  • Wen, X., S. Jian, and J. Wang. 2017. Prediction models of calorific value of coal based on wavelet neural networks. Fuel 199:512–22. doi:10.1016/j.fuel.2017.03.012.
  • Xu, L., and J. Yuan. 2015. Online identification of the lower heating value of the coal entering the furnace based on the boiler-side whole process models. Fuel 161:68–77. doi:10.1016/j.fuel.2015.08.009.
  • Yerel, S., and T. Ersen. 2013. Prediction of the calorific value of coal deposit using linear regression analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35 (10):976–80. doi:10.1080/15567036.2010.514595.
  • Zhang, L., Y. Gong, Y. Li, X. Wang, J. Fan, L. Dong, W. Ma, W. Yin, and S. Jia. 2015. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 113:167–73. doi:10.1016/j.sab.2015.09.021.
  • Zhongguang, F., Q. Minfang, and J. Yuan 2012. Regression forecast of main steam flow based on mean impact value and support vector regression. 2012 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Piscataway, NJ, IEEE, March 27–29, 1–5.
  • Zhou, S., J. Meng, and B. Liu. 2017. Investigation into the pharmacokinetic–Pharmacodynamic model of Zingiberis Rhizoma/Zingiberis Rhizoma Carbonisata and contribution to their therapeutic material basis using artificial neural networks. RSC Advances 7.
  • Zou, H., and M. Yuan. 2008. Composite quantile regression and the oracle model selection theory. Annals of Statistics 36 (3):1108–26. doi:10.1214/07-AOS507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.