153
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An evaluation of alternatives to energy recovery from municipal solid waste part 2: energy balance and carbon footprint

, , &
Pages 4712-4723 | Received 21 Mar 2019, Accepted 09 Aug 2019, Published online: 25 Sep 2019

References

  • Amponsah, N. Y., M. Troldborg, B. Kington, I. Aalders, and R. L. Hough. 2014. Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews 39:461–75. doi:10.1016/j.rser.2014.07.087.
  • Arafat, H. A., K. Jijakli, and A. Ahsan. 2015. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production 105:233–40. doi:10.1016/j.jclepro.2013.11.071.
  • Arena, U., F. Ardolino, and F. D. Gregorio. 2015a. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management (New York, N.Y.) 41:60–74. doi:10.1016/j.wasman.2015.03.041.
  • Arena, U., F. D. Gregorio, G. D. Troia, and A. Saponaro. 2015b. A techno-economic evaluation of a small-scale fluidized bed gasifier for solid recovered fuel. Fuel Processing Technology 131:69–77. doi:10.1016/j.fuproc.2014.11.003.
  • Boonpa, S., and A. Sharp. 2017. A comparative analysis of alternative fuels for Thailand’ s palm oil industry: A case study for refuse-derived fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:201–05. doi:10.1080/15567036.2016.1208305.
  • Brunner, P. H., and H. Rechberger. 2004. Practical handbook of material flow analysis. Boca Raton, FL: CRC Press LLC.
  • Burnley, S., R. Phillips, T. Coleman, and T. Rampling. 2011. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom. Waste Management (New York, N.Y.) 31:1949–59. doi:10.1016/j.wasman.2011.04.015.
  • Carbon Trust. 2007. Carbon footprint measurement methodology. London, UK. Version 1.
  • Consonni, S., M. Giugliano, and M. Grosso. 2005a. Alternative strategies for energy recovery from municipal solid waste part A: Mass and energy balances. Waste Management (New York, N.Y.) 25:123–35. doi:10.1016/j.wasman.2004.09.007.
  • Consonni, S., M. Giugliano, and M. Grosso. 2005b. Alternative strategies for energy recovery from municipal solid waste part B: Emission and cost estimates. Waste Management (New York, N.Y.) 25:137–48. doi:10.1016/j.wasman.2004.09.006.
  • Consonni, S., M. Giugliano, A. Massarutto, M. Ragazzi, and C. Saccani. 2011. Material and energy recovery in integrated waste management systems: Project overview and main results. Waste Management(New York, N.Y.) 31:2057–65. doi:10.1016/j.wasman.2011.04.016.
  • Consonni, S., and F. Viganò. 2012. Waste gasification vs. conventional waste-to-energy: A comparative evaluation of two commercial technologies. Waste Management 32:653–66. doi:10.1016/j.wasman.2011.12.019.
  • Dong, J., Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni, and Z. Zhou. 2018. Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production 203:287–300. doi:10.1016/j.jclepro.2018.08.139.
  • Eriksson, M., I. Strid, and P. A. Hansson. 2015. Carbon footprint of food waste management options in the waste hierarchy – A Swedish case study. Journal of Cleaner Production 93:115–25. doi:10.1016/j.jclepro.2015.01.026.
  • Fantozzi, F., P. Bartocci, B. D’Alessandro, F. Testarmata, and P. Fantozzi. 2015. Carbon footprint of truffle sauce in central Italy by direct measurement of energy consumption of different olive harvesting techniques. Journal of Cleaner Production 87:188–96. doi:10.1016/j.jclepro.2014.09.055.
  • Giugliano, M., S. Cernuschi, M. Grosso, and L. Rigamonti. 2011. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment. Waste Management 31:2092–101. doi:10.1016/j.wasman.2011.02.029.
  • Gohlke, O., and J. Martin. 2007. Drivers for innovation in waste-to-energy technology. Waste Management & Research 25:214–19. doi:10.1177/0734242X07079146.
  • IPCC. 2006. Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Published: IGES, Japan.
  • IPCC. 2007. Climate change 2007: The physical science basis. In Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change, Cambridge, New York: Cambridge University Press.
  • Lombardi, L., and E. A. Carnevale. 2017. Evaluation of the environmental sustainability of different waste-to-energy plant configurations. Waste Management (New York, N.Y.) 72:232–46.
  • Materazzi, M., P. Lettieri, R. Taylor, and C. Chapman. 2016. Performance analysis of RDF gasification in a two stage fluidized bed–Plasma process. Waste Management (New York, N.Y.) 47:256–66. doi:10.1016/j.wasman.2015.06.016.
  • Nam–Chol, O., H. S. Pak, Y. C. Sin, Y. H. Ri, and Y. N. Kim. 2018. A feasibility study of energy recovery of RDF from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:2914–22. doi:10.1080/15567036.2018.1514431.
  • Násner, A. M. L., N. P. Arruda, and S. P. Freitas. 2017. Refuse derived fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Waste Management(New York, N.Y.) 69:187–201. doi:10.1016/j.wasman.2017.08.043.
  • Viganò, F. 2018. A practical method to calculate the R1 index of waste-to-energy facilities. Waste Management (New York, N.Y.) 73:287–300. doi:10.1016/j.wasman.2017.09.036.
  • Vounatsos, P., K. Atsonios, G. Itskos, M. Agraniotis, P. Grammelis, and E. Kakaras. 2016. Classification of refuse derived fuel (RDF) and model development of a novel thermal utilization concept through air-gasification. Waste Biomass Valor 7:1297–308. doi:10.1007/s12649-016-9520-6.
  • Wiedmann, T., and J. Minx. 2007. A definition of ‘carbon footprint’. Ecological Economics Research Trends 2:55–65.
  • Wu, X., S. Hu, and S. Mo. 2013. Carbon footprint model for evaluating the global warming impact of food transport refrigeration systems. Journal of Cleaner Production 54:115–24. doi:10.1016/j.jclepro.2013.04.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.