421
Views
1
CrossRef citations to date
0
Altmetric
Research Article

CFD studies for energy conservation in the HVAC system of a hatchback model passenger car

ORCID Icon, , , , &
Pages 4724-4741 | Received 29 May 2019, Accepted 01 Jul 2019, Published online: 24 Sep 2019

References

  • Adhikari, V. P., A. Nassar, and Q. H. Nagpurwala. 2009. Numerical studies on the effect of cooling vent setting and solar radiation on air flow and temperature distribution in a passenger car. SAE Technical Paper, 28–48.
  • Alahmer, A., M. Abdelhamid, and M. Omar. 2012. Design for thermal sensation and comfort states in vehicles cabins. Applied Thermal Engineering 36:126–40. doi:10.1016/j.applthermaleng.2011.11.056.
  • Alahmer, A., A. Mayyas, A. A. Mayyas, M. A. Omar, and D. Shan. 2011. Vehicular thermal comfort models; a comprehensive review. Applied Thermal Engineering 31:995–1002.
  • Alahmer, A., M. Omar, A. R. Mayyas, and A. Qattawi. 2012. Analysis of vehicular cabins’ thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. Building and Environment 48:146–63. doi:10.1016/j.buildenv.2011.08.013.
  • Al-Kaiyiem, H. H., M. F. B. M. Sidik, and Y. R. A. L. Munusammy. 2010. Study on the thermal accumulation and distribution inside a parked car cabin. American Journal of Applied Sciences 7 (6):784–89.
  • Al-Kayiem, H. H., M. F. B. M. Sidik, and Y. R. A. L. Munusammy. 2010. Study on the thermal accumulation and distribution inside a parked car cabin. American Journal of Applied Sciences 7 (6):784–89. doi:10.3844/ajassp.2010.784.789.
  • Changa, T.-B., J.-J. Sheub, J.-W. Huangb, Y.-S. Lina, and -C.-C. Changa. 2018. Development of a CFD model for simulating vehicle cabin indoor air quality. Transportation Research Part D 62:433–40. doi:10.1016/j.trd.2018.03.018.
  • Chen, K.-H., S. Kaushik, T. Han, D. Ghosh, and M. Wang. 2012. Thermal comfort prediction and validation in a realistic vehicle thermal environment. SAE Technical Paper, 01–0645.
  • Chien, C. H., J. Y. Jang, Y. H. Chen, and S. C. Wu. 2008. 3-D numerical and experimental analysis for airflow within a passenger compartment. International Journal of Automotive Technology 9 (4):437−445. doi:10.1007/s12239-008-0053-2.
  • Chua, S. N. D., B. K. Chan, and S. F. Lim. 2019. Experimental and simulation study of thermal accumulation in an enclosed vehicle. IMechE. Proceedings of the Institution of Mechanical Engineers, Part D: Journal Automobile Engineering 233: 1–9.
  • Currle, J., and J. Maue. 2000. Numerical study of the influence of air vent area and air mass flux on the thermal comfort of car occupants. SAE Technical Paper, 01–0980.
  • Danca, P., F. Bode, I. Nastase, and A. Meslem. 2018. CFD simulation of a cabin thermal environment with and without human body – Thermal comfort evaluation. E3S Web of Conferences 32:01018. doi:10.1051/e3sconf/20183201018.
  • ElDegwy, A., and E. E. Khalil. 2018. Passengers, thermal comfort in private car cabin in hot climate. AIAA Propulsion and Energy Forum, Cincinnati, Ohio: American Institute of Aeronautics and Astronautics, July 9–11 .
  • Farrington, R. B., J. P. Rugh, and G. D. Barber. 2000. Effect of solar-reflective glazing on fuel economy, tailpipe emissions, and thermal comfort. SAE Technical Paper, 01–2694.
  • Han, T., and L. Huang. 2004. A model relating a thermal comfort scale to EHT comfort index. SAE Technical Paper, 01–0919.
  • Huang, L., and T. Han. 2002. Validation of 3-D passenger compartment hot soak and cooldown analysis for virtual thermal comfort engineering. SAE Technical Paper, 01–1304.
  • Jeffers, M., L. Chaney, and J. Rugh. 2015. Climate control load reduction strategies for electric drive vehicles in warm weather. SAE Technical Paper, 2015-01-0355. doi:10.4271/2015-01-0355.
  • Jonsson, J. 2007. Including solar load in CFD analysis of temperature distribution of a car passenger compartment. Master of Science Programme, Mechanical Engineering, Lulea University of Technology, Lulea, Sweden.
  • Karimi, G., E. C. Chan, J. R. Cullham, I. Linjacki, and L. Brennan. 2002. Thermal comfort analysis of an automobile driver with heated and ventilated seat. SAE Technical Paper, 01–0222.
  • Lee, J. W., E. Y. Jang, S. H. Lee, H. S. Ryou, S. Choi, and Y. Kim. 2014. Influence of the spectral solar radiation on the air flow and temperature distributions in a passenger compartment. International Journal of Thermal Sciences 75:36–44. doi:10.1016/j.ijthermalsci.2013.07.018.
  • Mezrhab, A., and M. Bouzidi. 2006. Computation of thermal comfort inside a passenger car compartment. Applied Thermal Engineering 26:1697–704.
  • Moon, J. H., J. W. Lee, C. H. Jeong, and S. H. Lee. 2016. Thermal comfort analysis in a passenger compartment considering the solar radiation effect. International Journal of Thermal Sciences 107:77e88. doi:10.1016/j.ijthermalsci.2016.03.013.
  • Musat, R., and E. Helerea. 2009. Parameters and models of the vehicle thermal comfort, Acta Universitatis Sapientiae. Electrical and Mechanical Engineering 1:215–26.
  • Purusothaman, M., T. N. Valarmathi, and S. K. Dada Mohammad. 2016. Computational fluid dynamic analysis of enhancing passenger cabin comfort using PCM. IOP Conference Series: Materials Science and Engineering 149:012–197.
  • Reda, I., E. E. Khalil, T. M. Aboudeif, and A. E. Degwy. 2017. Air flow regimes and thermal comfort in vehicle cabin considering solar radiation. Fluid Mechanics: Open Access 4:174. doi:10.4172/2476-2296.1000174.
  • Rush, J. P., and D. Bharathan. 2005. Predicting human thermal comfort in automobiles. SAE Technical Paper, 01–2008.
  • Sevilgen, G., and M. Kilic. 2013. Investigation on transient cooling of an automobile cabinwith a virtual manikin under solar radiation. Thermal Science: Year 17 (2):397–406. doi:10.2298/TSCI120623150S.
  • Shete, K. 2015. August. Influence of automotive air conditioning load on fuel economy of IC engine vehicles. International Journal of Scientific & Engineering Research 6 (8): 1367– 1372.
  • Zhang, H., L. Dai, G. Xu, Y. Li, W. Chen, and W. Q. Tao. 2009a. Studies of air flow and temperature field inside a passenger compartment for improving thermal comfort and saving energy. part I: Test/numerical model and validation. Applied Thermal Engineering 29:2022–27. doi:10.1016/j.applthermaleng.2008.10.005.
  • Zhang, H., L. Dai, G. Xu, Y. Li, W. Chen, and W. Q. Tao. 2009b. Studies of air flow and temperature field inside a passenger compartment for improving thermal comfort and saving energy. part II: Simulation results and discussion. Applied Thermal Engineering 29:2028–36. doi:10.1016/j.applthermaleng.2008.10.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.