83
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Consequence of nanoparticle physiognomies on heat transfer characteristics of heat exchanger

, &
Pages 4762-4776 | Received 27 May 2019, Accepted 01 Jul 2019, Published online: 03 Oct 2019

References

  • Aghabozorg, M. H., A. Rashidi, and S. Mohammadi. 2016. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Experimental Thermal and Fluid Science 72:182–89. doi:10.1016/j.expthermflusci.2015.11.011.
  • Akhtari, M., M. Haghshenasfard, and M. R. Talaie. 2013. Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. Numerical Heat Transfer Part A: Applications 63 (12):941–58.
  • Baba, M. S., A. V. S. R. Raju, and M. B. Rao. 2018. Heat transfer enhancement and pressure drop of Fe3O4 -water nanofluid in a double tube counter flow heat exchanger with internal longitudinal fins. Case Studies in Thermal Engineering 12:600–07. doi:10.1016/j.csite.2018.08.001.
  • Bahiraei, M., M. Hangi, and M. Saeedan. 2015. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy 93 (Part 2):2229–40, 15. doi:10.1016/j.energy.2015.10.120.
  • Bahiraei, M., S. M. Hosseinalipour, and M. Saeedan. 2015. Prediction of Nusselt number and friction factor of water-Al2O3 nanofluid flow in shell-and-tube heat exchanger with helical baffles. Chemical Engineering Communications 202 (2):260–68. doi:10.1080/00986445.2013.840828.
  • Elias, M. M., M. Miqdad, I. M. Mahbubul, R. Saidur, M. Kamalisarvestani, M. R. Sohel, N. A. Arif Hepbasli, B. Rahim, and M. A. Amalina. 2013. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. International Communications in Heat and Mass Transfer 44:93–99. doi:10.1016/j.icheatmasstransfer.2013.03.014.
  • Farajollahi, B., S. G. Etemad, and M. Hojjat. 2010. Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer 53 (1–3):12–17. doi:10.1016/j.ijheatmasstransfer.2009.10.019.
  • Ghanbarpour, M., N. Nikkam, R. Khodabandeh, and M. S. Toprak. 2015. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Applied Thermal Engineering 90:127–35. doi:10.1016/j.applthermaleng.2015.07.004.
  • Ghozatloo, A., A. Rashidi, and M. Shariaty-Niassar. 2014. Convective heat transfer enhancement of grapheme nanofluids in shell and tube heat exchanger. Experimental Thermal and Fluid Science 53:136–41. doi:10.1016/j.expthermflusci.2013.11.018.
  • Godson, L., K. Deepak, C. Enoch, B. Jefferson, and B. Raja. 2014. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Archives of Civil and Mechanical Engineering 14 (3):489–96. doi:10.1016/j.acme.2013.08.002.
  • Huminic, G., and A. Huminic. September 2011. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. International Journal of Heat and Mass Transfer 54(19–20):4280–87. doi: 10.1016/j.ijheatmasstransfer.2011.05.017.
  • Khalifa, A. J. N., and M. A. Banwan. 2015. Effect of volume fraction of γAl2O3 nanofluid on heat transfer enhancement in a concentric tube heat exchanger. Heat Transfer Engineering 36 (16):1387–96. doi:10.1080/01457632.2015.1003719.
  • Khedkar, R. S., S. S. Sonawane, and K. L. Wasewar. 2014. Heat transfer study on concentric tube heat exchanger using TiO2-water based nanofluid. International Communications in Heat and Mass Transfer 57:163–69. doi:10.1016/j.icheatmasstransfer.2014.07.011.
  • Lee, S. W., S. D. Park, S. Kang, I. C. Bang, and J. H. Kim. 2011. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer 54:433–38. doi:10.1016/j.ijheatmasstransfer.2010.09.026.
  • Leong, K. Y., R. Saidur, T. M. I. Mahlia, and Y. H. Yau. 2012. Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants. International Journal of Heat and Mass Transfer 55 (4):808–16. doi:10.1016/j.ijheatmasstransfer.2011.10.027.
  • Li, X., C. Zou, T. Wang, and X. Lei. 2015. Rheological behavior of ethylene glycol-based SiC nanofluids. International Journal of Heat and Mass Transfer 84:925–30. doi:10.1016/j.ijheatmasstransfer.2015.01.104.
  • Liu, L., E. Kim, Y.-G. Park, and A. M. Jacobi. 2012. The potential impact of nanofluid enhancements on the performance of heat exchangers. Heat Transfer Engineering 33 (1):31–41. doi:10.1080/01457632.2011.584814.
  • Maddah, H., R. Aghayari, M. Mirzaee, M. H. Ahmadi, M. Sadeghzadeh, and A. J. Chamkha. 2018. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. International Communications in Heat and Mass Transfer 97:92–102. doi:10.1016/j.icheatmasstransfer.2018.07.002.
  • Milani Shirvan, K., M. Mamourian, S. Mirzakhanlari, and R. Ellahi. 2017. Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: A sensitivity analysis by response surface methodology. Powder Technology 313:99–111. doi:10.1016/j.powtec.2017.02.065.
  • Monirimanesh, N., S. M. Nowee, S. Khayyami, and I. Abrishamchi. 2016. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers. Heat Mass Transfer 52:1025–35. doi:10.1007/s00231-015-1615-2.
  • Nazarimanesh, M., T. Yousefi, and M. Ashjaee. 2016. Experimental investigation on the effect of nanofluid on the thermal performance of symmetric sintered U shaped heat pipe. Heat Mass Transfer 52:1255–64. doi:10.1007/s00231-015-1644-x.
  • Poongavanam, G. K., B. Kumar, S. Duraisamy, K. Panchabikesan, and V. Ramalingam. 2019. Heat transfer and pressure drop performance of solar glycol/activated carbon based nanofluids in shot peened double pipe heat exchanger. Renewable Energy 140:580–91. doi:10.1016/j.renene.2019.03.059.
  • Rahimi, A., A. Amiri, A. Kasaeipoor, and E. H. Malekshah. 2018. Heat transfer enhancement using Al2O3 -EG/W(60/40 vol%) in multiple-pipe heat exchanger. Journal of Molecular Liquids 261:319–36. doi:10.1016/j.molliq.2018.04.008.
  • Rashidi, M. M., M. Nasiri, M. S. Shadloo, and Z. Yang. 2017. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transfer Engineering 38 (9):853–66. doi:10.1080/01457632.2016.1211916.
  • Ravi Kumar, N. T., P. Bhramara, B. M. Addis, L. S. Sundar, M. K. Singh, and A. C. M. Sousa. 2017. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. International Communications in Heat and Mass Transfer 81:155–63. doi:10.1016/j.icheatmasstransfer.2016.12.019.
  • Saterlie, M., H. Sahin, B. Kavlicoglu, Y. Liu, and O. Graeve. 2011. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Research Letters 6:217. doi:10.1186/1556-276X-6-217.
  • Senthil, R., D. Ratchagaraja, R. Silambarasan, and R. Manikandan. 2016. Contemplation of thermal characteristics by filling ratio of aluminum oxide nano fluid in wire mesh heat pipe. Alexandria Engineering Journal 55:1063–68. doi:10.1016/j.aej.2016.03.011.
  • Shahrul, I. M., I. M. Mahbubul, R. Saidur, S. S. Khaleduzzaman, M. F. M. Sabri, and M. M. Rahman. 2014. Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates, numerical heat transfer. Part A: Applications 65 (7):699–713.
  • Sivakumar, A., N. Alagumurthi, and T. Senthilvelan. 2016. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transfer 52:1265–74. doi:10.1007/s00231-015-1649-5.
  • Sonawane, S. S., R. S. Khedkar, and K. L. Wasewar. 2013. Study on concentric tube heat exchanger heat transfer performance using Al2O3 – Water based nanofluids. International Communications in Heat and Mass Transfer 49:60–68. doi:10.1016/j.icheatmasstransfer.2013.10.001.
  • Tishchenko, Y., O. O. Ilchenko, and P. O. Kuzema. 2015. Tga-Dsc-Ms analysis of silicon carbide and of its carbon-silica precursor. Chemistry, Physics and Technology of Surface 6 (2):216–23.
  • Togun, H., S. N. Kazi, and A. Badarudin. 2017. Turbulent heat transfer to separation nanofluid flow in annular concentric pipe. International Journal of Thermal Sciences 117:14–25. doi:10.1016/j.ijthermalsci.2017.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.