98
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Parametric study on the production of biodiesel from waste sunflower oil using Zeolitic tuff based catalyst

ORCID Icon, &
Pages 5310-5320 | Received 09 Dec 2018, Accepted 02 Jul 2019, Published online: 29 Sep 2019

References

  • Al-Hamamre, Z. 2015. Potential of utilizing olive cake oil for biodiesel manufacturing. Energy sources, Part A recover. Utility Environmental Effects 37:2609–15.
  • Al-hamamre, Z., and J. Yamin. 2014. Parametric study of the alkali catalyzed transesterification of waste frying oil for biodiesel production. Energy Conversion and Management 79:246–54. doi:10.1016/j.enconman.2013.12.027.
  • Al-jammal, N., Z. Al-hamamre, and M. Alnaief. 2016. Manufacturing of zeolite based catalyst from zeolite tuff for biodiesel production from waste sun fl ower oil. Renewable Energy 93:449–59. doi:10.1016/j.renene.2016.03.018.
  • ASTM D6751-07b, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, ASTM International, West Conshohocken, PA, 2007, www.astm.org.
  • ASTM D975-13: Standard specification for diesel fuel oils active standard. ASTM International. West Conshohocken, PA; 2002
  • Borges, M. E., and L. Díaz. 2012. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews 16:2839–49. doi:10.1016/j.rser.2012.01.071.
  • Cataluña, R., and R. Da Silva. 2012. Effect of cetane number on specific fuel consumption and particulate matter and unburned hydrocarbon emissions from diesel engines. Journal of Combustion 2012:1–6. doi:10.1155/2012/738940.
  • Chouhan, A. P. S., and A. K. Sarma. 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15:4378–99. doi:10.1016/j.rser.2011.07.112.
  • Colombo, K., and L. Ender. 2017. The study of biodiesel production using CaO as a heterogeneous catalytic reaction. Egyptian Journal of Petroleum 26:341–49. doi:10.1016/j.ejpe.2016.05.006.
  • Dagne, H., R. Karthikeyan, and S. Feleke. 2019. Waste to energy: Response surface methodology for optimization of biodiesel. Hindawi, Journal of Energy 2019:19.
  • Daramola, M. O., K. Mtshali, L. Senokoane, and O. M. Fayemiwo. 2016. Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst : A statistical approach. Integrative Medicine Research 10:675–84.
  • Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Conversion and Management 44:2093–109. doi:10.1016/S0196-8904(02)00234-0.
  • DIN EN 590:2014 Automotive fuels - Diesel - Requirements and test methods; German version EN 590:2013 + AC: 2014 (Foreign Standard). Deutsches Institut fur Normung E.V. (DIN), Berlin/Germany.
  • Dorado, M. P., E. Ballesteros, F. J. Lo, and M. Mittelbach. 2004. Optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Energy & Fuels 18:77–83. doi:10.1021/ef0340110.
  • Elkady, M. F., A. Zaatout, and O. Balbaa. 2015. Production of biodiesel from waste vegetable oil via KM micromixer. Journal of Chemistry 2015:1–9. doi:10.1155/2015/630168.
  • EN 14213. 2003. Heating fuels. Fatty acid methyl esters (FAME). Requirements and test methods.
  • EN 14214. 2013. Liquid petroleum products - Fatty acid methyl esters (FAME) for use in diesel engines and heating applications.
  • EN-590: 2013. Automotive fuels - Diesel - Requirements and test methods; Germanversion EN 590:2013. http://www.beuth.de/en/standard/din-en-590/180138695;jsessionid=7e7ki4KHEOea7CdAPSMkGDx.2?SearchID=563763606.
  • Fogler, H. S. 2006. Elements of chemical reaction engineering. 4th ed. New Jersey: Prentice-Hall Inc.
  • Gaurav, A., F. T. T. Ng, and G. L. Rempel. 2016. A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst- Modeling, economic and environmental analysis. Green Energy & Environment 1:62–74. doi:10.1016/j.gee.2016.05.003.
  • Hartono, R. & Wijanarko, Anondho & Hermansyah, Heri. 2018. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst. IOP Conference Series: Materials Science and Engineering. 345.
  • Intarapong, P., A. Luengnaruemitchai, and S. Jai-in. 2011. Transesterification of palm oil over KOH/NaY zeolite in a packed-bed reactor. International Journal of Renewable Energy Research 1:271–80.
  • IUPAC. 1992. Standard methods for the analysis of oils, fats and derivatives, 1st supplement to the 7th edition international union of pure and applied chemistry commission on oils, fats and derivatives, England: Blackwell, Oxford
  • João, F.P., and Jaime F. GomesB. Puna, João C.M. Bordado, M. Joana N. Correia & Ana P.S. Dias (2012) Status of biodiesel production using heterogeneous alkaline catalysts, International Journal of Environmental Studies, 69:4, 635–653, doi:10.1080/00207233.2012.693286
  • Kesieme, U., K. Pazouki, A. Murphy, and A. Chrysanthou. 2019. Biofuel as alternative shipping fuel: Technology, environmental. Sustainable Energy & Fuels 3:899–909. doi:10.1039/C8SE00466H.
  • Korus, R. A. 1993. Transesterification process to manufacture ethyl ester of rape oil. Proceeding Of The First Biomass Conference Of The Americas: Energy, Environment, Agriculture, and Industry, Burlington, Vt (United States), 30 Aug - 2 Sep vol. II:815–26.
  • Kouzu, M., T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka. 2008. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798–806. doi:10.1016/j.fuel.2007.10.019.
  • Leung, D. Y. C., and Y. Guo. 2006. Transesterification of neat and used frying oil : Optimization for biodiesel production. Fuel Processing Technology 87 (87):883–90. doi:10.1016/j.fuproc.2006.06.003.
  • Marchetti, J. M., V. U. Miguel, and A. F. Errazu. 2007. Heterogeneous esterification of oil with high amount of free fatty acids. Fuel 86:906–10. doi:10.1016/j.fuel.2006.09.006.
  • Marıa Jesus Ramos, A. C., L. Rodrı´guez, R. Romero, and A. N. Pe´ Rez. 2008. General transesterification of sunflower oil over zeolites using different metal loading : A case of leaching and agglomeration studies. Applied Catalysis A 346:79–85. doi:10.1016/j.apcata.2008.05.008.
  • Martinez-guerra, E., and V. G. Gude. 2017. Assessment of sustainability indicators for biodiesel production. Applied Sciences 7:869. doi:10.3390/app7090869.
  • Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification - A review. Renewable and Sustainable Energy Reviews 10:248–68. doi:10.1016/j.rser.2004.09.002.
  • Mowla, D., N. Rasti, and P. Keshavarz. 2016. Transesterification of waste cooking oil for biodiesel production using modified clinoptilolite zeolite as a heterogeneous catalyst. International Journal of Chemical Kinetics 10:1201–05.
  • Mukenga, M. 2012. Biodiesel production over supported zinc oxide nanoparticles. In Master of technology thesis, the faculty of engineering and the built environment, university of johannesburg, ed.South Africa: Auckland Park.
  • Musa, I. A. 2016. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum 25:21–31. doi:10.1016/j.ejpe.2015.06.007.
  • Noiroj, K., P. Intarapong, A. Luengnaruemitchai, and S. Jai-in. 2009. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy 34:1145–50. doi:10.1016/j.renene.2008.06.015.
  • Ogunkunle, O., O. O. Oniya, and A. O. Adebayo. 2017. Yield response of biodiesel production from heterogeneous and homogeneous catalysis of milk bush seed (Thevetia peruviana) oil. Energy and Policy Research 4:21–28. doi:10.1080/23815639.2017.1319772.
  • Refaat, A. A. 2011. Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science & Technology 8:203–21. doi:10.1007/BF03326210.
  • Sandouqa, A., and Z. Al-hamamre. 2018. Energy analysis of biodiesel production from Jojoba seed oil. Renewable Energy 130:831–42. doi:10.1016/j.renene.2018.07.015.
  • Shuler, M. L., and F. Kargi. 2002. Bioprocess engineering. Basic concepts, 07458. 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR.
  • Taufiqurrahmi, Niken & Mohamed, Abdul & Bhatia, and Subhash. 2011. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: Process optimization studies. Bioresource technology. 102 (22). 10686–94. doi:10.1016/j.biortech.2011.08.068.
  • Uzun, B. B., M. Kiliç, N. Özbay, A. E. Pütün, and E. Pütün. 2012. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy 44:347–51. doi:10.1016/j.energy.2012.06.024.
  • Vieitez, I., I. Alckmin, G. R. Borges, F. C. Corazza, J. V. Oliveira, and M. A. Grompone. 2010. Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy 35:1976–81. doi:10.1016/j.renene.2010.01.027.
  • Vyas, A. P., J. L. Verma, and N. Subrahmanyam. 2010. A review on FAME production processes. Fuel 89:1–9. doi:10.1016/j.fuel.2009.08.014.
  • Wenzel, B., M. Tait, A. Módenes, and A. Kroumov. 2006. Modelling chemical kinetics of soybean oil transesterification process for biodiesel production: An analysis of molar ratio between alcohol and soybean oil temperature changes on the process conversion rate. Bioautomation 5:13–22.
  • Wilson, K., A. F. Lee, and J. Dacquin. 2012. Heterogeneous catalysts for converting renewable feedstocks to fuels and chemicals contents. New York: Springer.
  • Xie, W., H. Peng, and L. Chen. 2006. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A 300:67–74. doi:10.1016/j.apcata.2005.10.048.
  • Xie, W., X. Huang, and H. Li. 2007. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology 98:936–39. doi:10.1016/j.biortech.2006.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.