113
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of a different catalytic oxidation selection of heavy-duty diesel engines with the use of alternative nanoparticles

Pages 5321-5339 | Received 04 Jan 2019, Accepted 02 Jul 2019, Published online: 28 Oct 2019

References

  • Ahmet, A., A. Duran, G. Metin, and K. Ugur. 2002. Improvement of diesel fuel properties by using additives. Energy Convers Manage 43:1021–25. doi:10.1016/S0196-8904(01)00094-2.
  • Anonymous-B. 2015. http://www.businessinsider.com/adding-urea-to-clean-diesel-cars-can-i-just-pee-in-the-tank-2011-5#ixzz3XBp2lw3G.
  • Aydın, K., and Ş. Hande. 2017. Development of alternative solutions to reduce exhaust emissions in diesel engines. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(4):63–70.
  • Balamurugan, K., A. Tamilvanan, M. Anbarasu, M. S. Akil, and S. Srihari. 2013. Nano-copper additive for reducing NOx emission in soya bean biodiesel-fuelled CI engine. Journal of Biofuels 4 (1):1–8. doi:10.5958/j.0976-4763.4.1.001.
  • Barrios, C. C., C. Martín, A. Domínguez-S_aez, P. Alvarez, M. Pujadas, and J. Casanova. 2014. Effects of the addition of oxygenated fuels as additives on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine. Fuel 132:93e100. doi:10.1016/j.fuel.2014.04.071.
  • Berner, G., 1993. Static mixer. International Patent Application, WO 93/00990.
  • Bertola, A., R. Li, and K. Boulouchos. 2003. Influence of water-diesel fuel emulsions and EGR on combustion and exhaust emissions of heavy duty DI-diesel engines equipped with common-rail injection system. SAE Transactions 112 (4):2244e60.
  • Bosch, H., and F. Janssen. 1988. Formation and control of nitrogen oxides. Catalysis Today 2 :369
  • Byun, D. Y., S. W. Baek, and J. H. Cho. 1999. Microexplosion of aluminum slurry droplets. International Journal of Heat and Mass Transfer 42:4475–86. doi:10.1016/S0017-9310(99)00111-8.
  • Cobb, D., L. Glatch, J. Rudd, and S. Snyder. 1991. Application of selective catalytic reduction (SCR) technology for NOx reduction from refinery combustion sources. Environmental Progress 10:49–59. doi:10.1002/ep.670100116.
  • Dreizin, E. L. 2009a. Metal-based reactive nanomaterials. Progress in Energy and Combustion Science 35:141–67. doi:10.1016/j.pecs.2008.09.001.
  • Dreizin, E. L. 2009b. Metal-based reactive nano materials. Progress in Energy and Combustion Science 35:141–67. doi:10.1016/j.pecs.2008.09.001.
  • Heywood, J. B. 1988. Internal combustion engine fundamentals. New York: McGraw-Hill. Heywood JB. Internal combustion engine fundamentals. New York: McGraw-Hill; 1988.
  • Hirata, K., N. Masaki, H. Ueno, and H. Akagawa. 2005. Development of urea-SCR system for a heavy-duty commercial vehicles. SAE Technical Paper 2005-01-1860.
  • Jean-Claude Guibet. Fuels and engines. Technip Editions; 1999. p. 482–6
  • Kao, M. J., C. C. Ting, B. F. Lin, and T. T. Tsung. 2008. Aqueous aluminum nanofluid combustion in diesel fuel. Journal of Testing and Evaluation 36:186–90.
  • Koebel, M., G. Madia, and M. Elsener. 2002. Selective catalytic reduction of NO and NO2 at low temperatures. Catalysis Today 73:239–47. doi:10.1016/S0920-5861(02)00006-8.
  • Kumar, S., P. Dinesha, and I. Bran. December 1, 2017. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine. Energy 140 (Part 1): 98–105. doi:10.1016/j.energy.2017.08.079.
  • Lenin, M. A., M. R. Swaminathan, and G. Kumaresan. 2013. Performance and emission characteristics of a DI diesel engine with a nanofuel additive. In Fuel 109:362–65. ISSN 0016-2361. doi:10.1016/j.fuel.2013.03.042.
  • Mathes, W., F. Witzel, and S. Schnapp. 1999. Exhaust gas control system for diesel engine exhaust gases. International Patent Application, WO 99/05402, 63 101–24. doi:10.1046/j.1469-1809.1999.6320101.x.
  • Peter, E. 2008. Particulate emissions from vehicles, 261–62. John Wiley and Sons, Ltd.
  • Rakopoulos, C. D., D. C. Rakopoulos, G. M. Kosmadakis, and R. G. Papagiannakis. March 12, 2019. Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine. Energy 174 (2019): 1145–57. doi:10.1016/j.energy.2019.03.063.
  • Rolvin, D., B. K. Silvaa, and G. Thirumaleshwara Bhatc. 2015. Performance and emission characteristics of a C.I. Engine fuelled with diesel and TiO2 nanoparticles as fuel additive, Materials Today: Proceedings,Elsevier, 2 3728–35.
  • Sarofim Adel, F., B. Palotas Arpad, R. J. David, G. Eddings Eric, P. Ignacio, and D. Marsh Nathan. 2007. Evaluation of organometallic fuel additives for soot suppression. Combustion Science and Technology 197:987–1001.
  • Sarvestany, F. A., E. E. Bajestan, and M. Mir. 2013. Effects of magnetic nanofluid fuel combustion on the performance and emission characteristics. Journal of Dispersion Science and Technology. doi:10.1080/01932691.2013.874296.
  • Sarvestany, S. N., A. Farzad, E. E. Bajestan, and M. Mir. 2014. Effects of magnetic nanofluid fuel combustion on the performance and emission characteristics. Journal of Dispersion Science and Technology 08:1745–50. doi:10.1080/01932691.2013.874296.
  • Senthilraja, S., M. Karthikeyan, and R. Gangadevi. 2010. Nanofluid applications in future automobiles: Comprehensive review of existing data. Nano-Micro Letters 2 (4):306–10. doi:10.1007/BF03353859.
  • Shafil, M. B., F. Daneshvar, N. Jahani, and K. Mobini. 2011. Effect of ferro fluid on the performance and emission patterns of a four stroke diesel engine. Advances in Mechanical Engineering 2011:529049.
  • Shiva Kumar, P., and I. Dinesha. 2017. Bran influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. Energy 140:98–105. doi:10.1016/j.energy.2017.08.079.
  • Takahashi, F., I. J. Heilweil, and F. L. Dryer. 1989. Disruptive burning mechanism of free slurry droplets. Combustion Science and Technology 65:151–65. doi:10.1080/00102208908924046.
  • Wong, S. C., and A. C. Lin. 1992. Microexplosion mechanisms of aluminum/carbon slurry droplets. Combustion and Flame 89:64–76. doi:10.1016/0010-2180(92)90078-4.
  • Wua, B. Q., X. Xiea, Y. Wanga *, and T. Roskillya. 2017. Experimental investigations on diesel engine performance and emissions using biodiesel adding with carbon coated aluminum nanoparticles. Energy Procedia 142:3603–08. doi:10.1016/j.egypro.2017.12.251.
  • Xiaolu, L., C. Hongyan, Z. Zhiyong, and H. Zhen. 2006. Study of combustion and emission characteristics of a diesel engine operated with dimethyl carbonate. Energy Conversion and Management 47 (11):1438e48. doi:10.1016/j.enconman.2005.08.021.
  • Yetter, R. A., G. A. Risha, and S. F. Son. 2009. Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute. International Symposium on Combustion 32:1819–38. doi:10.1016/j.proci.2008.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.