170
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Estimation of cold flow properties of biodiesel using ANFIS-based models

, , &
Pages 5440-5457 | Received 10 Feb 2019, Accepted 02 Jul 2019, Published online: 30 Sep 2019

References

  • Al-Shanableh, F. 2017. Characterization of cold flow properties of biodiesel transesterified from waste frying oil. Ph. D. Thesis in Mechanical Engineering. http://docs.neu.edu.tr/library/6533447758.pdf.
  • Al-Shanableh, F., A. Evcil, and M. A. Savas. 2016. Prediction of cold flow properties of biodiesel fuel using artificial neural network. Procedia Computer Science 102:273–80. doi:10.1016/j.procs.2016.09.401.
  • Al-Shanableh, F., A. Evcil, and M. A. Savas. 2017. Fuzzy logic model for prediction of cold filter plugging point of biodiesel from various feedstock. Procedia Computer Science 120:245–52. doi:10.1016/j.procs.2017.11.235.
  • Altun, Ş., and M. Lapuerta. 2014. Properties and emission indicators of biodiesel fuels obtained from waste oils from the Turkish industry. Fuel 128:288–95. doi:10.1016/j.fuel.2014.03.024.
  • Amani, M. A., M. S. Davoudi, K. Tahvildari, S. M. Nabavi, and M. S. Davoudi. 2013. Biodiesel production from Phoenix dactylifera as a new feedstock. Industrial Crops and Products 43:40–43. doi:10.1016/j.indcrop.2012.06.024.
  • Aminian, A., and B. ZareNezhad. 2018. Accurate predicting the viscosity of biodiesels and blends using soft computing models. Renewable Energy 120:488–500. doi:10.1016/j.renene.2017.12.038.
  • Anwar, A., and A. Garforth. 2016. Challenges and opportunities of enhancing cold flow properties of biodiesel via heterogeneous catalysis. Fuel 173:189–208. doi:10.1016/j.fuel.2016.01.050.
  • ASTM International. 2011. Standard test method for cloud point of petroleum products (ASTM D2500). West Conshohocken.
  • ASTM International. 2015. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels (ASTM D6751). West Conshohocken.
  • ASTM International. 2016. Standard test method for cold filter plugging point of diesel and heating fuels (ASTM D6371). West Conshohocken.
  • ASTM International. 2017. Standard test method for pour point of petroleum products (ASTM D97). West Conshohocken.
  • Betiku, E., A. S. Osunleke, V. O. Odude, A. Bamimore, B. Oladipo, A. A. Okeleye, and N. B. Ishola. 2018. Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification. Biofuels. doi:10.1080/17597269.2018.1472980.
  • Bilin, M., B., . F. Alshanableh, A. Evcil, and M. A. Savas. 2018. A comparative examination of the quality of Jojoba seed oil harvested on the mesaoria plain of Cyprus Island. 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara. doi: 10.1109/ISMSIT.2018.8567052
  • Devan, P. K., and N. V. Mahalakshmi. 2009. Performance, emission and combustion characteristics of poon oil and its diesel blends in a DI diesel engine. Fuel 88 (5):861–67. doi:10.1016/j.fuel.2008.11.005.
  • Dunn, R. O. 2010. Cold flow properties of biodiesel by automatic and manual analysis methods. Journal of ASTM International 7 (4):1–15. doi:10.1520/JAI102618.
  • Encinar, J. M., J. F. Gonzalez, and A. R. Reinares. 2007. Ethanolysis of used frying oil: Biodiesel preparation and characterization. Fuel Processing Technology 88:513–22. doi:10.1016/j.fuproc.2007.01.002.
  • European Standards. 1990. Animal and vegetable fats and oils – Analysis by gas chromatography of methyl esters of fatty acids (EN ISO 5508). Brussels
  • European Standards. 1994. Petroleum products – Determination of cloud point (EN 23015). Brussels.
  • European Standards. 2003. Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of acid value (EN 14104). Brussels.
  • European Standards. 2010. Automotive fuels – Diesel – Requirements and test methods (EN 590). Brussels.
  • European Standards. 2011. Fat and oil derivatives – Fatty acid methyl esters (FAME) – Determination of ester and linolenic acid methyl ester contents (EN 14103). Brussels.
  • European Standards. 2012. Automotive fuels – Fatty acid methyl esters (FAME) – Requirements and tests (EN 14214). Brussels.
  • European Standards. 2015. Diesel and domestic heating fuels – Determination of cold filter plugging point (EN 116). Brussels.
  • Evcil, A., F. Al-Shanableh, and M. A. Savas. 2018. Variation of solid fraction with cold flow properties of biodiesel produced from waste frying oil. Fuel 215:522–27. doi:10.1016/j.fuel.2017.11.055.
  • Giakoumis, E. G. 2013. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy 50:858–78. doi:10.1016/j.renene.2012.07.040.
  • Giraldo, S. Y., L. A. Rios, and N. Suárez. 2013. Comparison of glycerol ketals, glycerol acetates and branched alcohol-derived fatty esters as cold-flow improvers for palm biodiesel. Fuel 108:709–14. doi:10.1016/j.fuel.2013.02.039.
  • Guo, J., and A. Baghban. 2017. Application of ANFIS strategy for prediction of biodiesel production using supercritical methanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (17):1862–68. doi:10.1080/15567036.2017.1380731.
  • Hoekman, S. K., A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan. 2012. Review of biodiesel composition, properties, and specifications. Renewable & Sustainable Energy Reviews 16:143–69. doi:10.1016/j.rser.2011.07.143.
  • Hosoz, M., H. M. Ertunc, Karabektas, and G. Ergen. 2013. ANFIS modelling of the performance and emissions of a diesel engine using diesel fuel and biodiesel blends. Applied Thermal Engineering 60:24–32. doi:10.1016/j.applthermaleng.2013.06.040.
  • International Organization for Standardization. 1994. Petroleum products – Determination of pour point (ISO 3016). Geneva.
  • Jang, J. R. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23:665–85. doi:10.1109/21.256541.
  • Jin, F., X. Zeng, J. Cao, K. Kawasaki, A. Kishita, K. Tohji, and H. Enomoto. 2010. Partial hydrothermal oxidation of unsaturated high molecular weight carboxylic acids for enhancing the cold flow properties of biodiesel fuel. Fuel 89:2448–54. doi:10.1016/j.fuel.2010.01.004.
  • Kivevele, T., and Z. Huan. 2015. Influence of metal contaminants and antioxidant additives on storage stability of biodiesel produced from non-edible oils of Eastern Africa origin (Croton megalocarpus and Moringaoleifera oils). Fuel 158:530–37. doi:10.1016/j.fuel.2015.05.047.
  • Knothe, G. 2008. Designer Biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy and Fuels 22:1358–64. doi:10.1021/ef700639e.
  • Knothe, G., M. Bagby, and T. Ryan. 1997. Cetane numbers of fatty compounds: Influence of compound structure and of various potential cetane improvers. SAE Technical Paper 971681. doi:10.4271/971681.
  • Kumar, S. 2019. Estimation capabilities of biodiesel production from algae oil blend using adaptive neuro-fuzzy inference system (ANFIS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1602203.
  • The MathWorks Inc. 2015. MATLAB R2015: 8.5.0.197613. Massachusetts.
  • Mihaela, P., R. Josef, N. Monica, and Z. Rudolf. 2013. Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: Safflower, soybean and rapeseed). Fuel 111:114–19. doi:10.1016/j.fuel.2013.04.012.
  • Moser, B. R. 2008. Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy and Fuels 22 (6):4301–06. doi:10.1021/ef800588x.
  • Moser, B. R. 2012. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel 92 (1):231–38. doi:10.1016/j.fuel.2011.08.005.
  • Mostafaei, M. 2018a. Prediction of biodiesel fuel properties from its fatty acids composition using ANFIS approach. Fuel 229:227–34. doi:10.1016/j.fuel.2018.04.148.
  • Mostafaei, M. 2018b. ANFIS models for prediction of biodiesel fuels cetane number using desirability function. Fuel 216:665–72. doi:10.1016/j.fuel.2017.12.025.
  • Ramadhas, A. S., S. Jayaraj, and C. Muraleedharan. 2005. Biodiesel production from high FFA rubber seed oil. Fuel 84 (4):335–40. doi:10.1016/j.fuel.2004.09.016.
  • Ramos, M. J., C. M. Fernández, A. Casas, L. Rodríguez, and A. Pérez. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology 100:261–68. doi:10.1016/j.biortech.2008.06.039.
  • Sajjadi, B., A. A. Abdul Raman, and H. Arandiyan. 2016. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable & Sustainable Energy Reviews 63:62–92. doi:10.1016/j.rser.2016.05.035.
  • Sanford, S. D., J. M. White, P. S. Shah, C. Wee, M. A. Valverde, and G. R. Meier. 2010. Feedstock and Biodiesel Characteristics Report. Renewable Energy Group Inc. http://biodiesel.org/reports/20091117_gen-398.pdf
  • Sarin, A., R. Arora, N. P. Singh, R. Sarin, R. K. Malhotra, and K. Kundu. 2009. Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point. Energy 43:2012–16. doi:10.1016/j.energy.2009.08.017.
  • Shah, M., S. Ali, M. Tariq, N. Khalid, F. Ahmad, and M. A. Khan. 2014. Catalytic conversion of jojoba oil into biodiesel by organotin catalysts, spectroscopic and chromatographic characterization. Fuel 118:392–97. doi:10.1016/j.fuel.2013.11.010.
  • Sharma, Y. C., Y. C. Singh, and S. N. Upadhyay. 2007. Advancements in development and characterization of biodiesel: A review. Fuel 87:2355–73. doi:10.1016/j.fuel.2008.01.014.
  • Sohpal, V. K., and A. Singh. 2014. Optimization of alkali catalyst for transesterification of jatrophacurcus using adaptive neuro-fuzzy modeling. Biofuel Research Journal 2:70–76. doi:10.18331/BRJ2015.1.2.7.
  • Su, Y. C., and Y. A. Liu. 2011. Selection of prediction methods for thermophysical properties for process modelling and product design of biodiesel manufacturing. Industrial & Engineering Chemistry Research 50:6809–36. doi:10.1021/ie102441u.
  • Tang, H., S. O. Salley, and K. Y. Simon. 2008. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87:3006–17. doi:10.1016/j.fuel.2008.04.030.
  • Udomsap, P., U. Sahapatsombat, B. Puttasawat, P. Krasae, N. Chollacoop, and S. Topaiboul. 2008. Preliminary investigation of cold flow improvers for palm-derived biodiesel blends. International Journal of Minerals, Metallurgy, and Materials 18 (2):99–102.
  • Wang, L., H. Yu, X. He, and R. Liu. 2012. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology 40 (4):397–404. doi:10.1016/S1872-5813(12)60018-8.
  • Yue, X., Y. Chen, and G. Chang. 2018. Accurate modeling of biodiesel production from castor oil using ANFIS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (4):432–38. doi:10.1080/15567036.2017.1422058.
  • Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates. 2003. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology 89:1–16. doi:10.1016/S0960-8524(03)00040-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.