156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An evaluation of alternatives to energy recovery from municipal solid waste part 1: waste flow and energy potential

, , &
Pages 5648-5660 | Received 21 Mar 2019, Accepted 09 Aug 2019, Published online: 05 Oct 2019

References

  • Arafat, H. A., K. Jijakli, and A. Ahsan. 2015. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production 105:233–40. doi:10.1016/j.jclepro.2013.11.071.
  • Arena, U. 2011. Gasification: An alternative solution for waste treatment with energy recovery. Waste Management (new York, N.Y.) 31:405–06. doi:10.1016/j.wasman.2010.12.006.
  • Arena, U. 2012. Process and technological aspects of municipal solid waste gasification. A review. Waste Management (new York, N.Y.) 32:625–39. doi:10.1016/j.wasman.2011.09.025.
  • Beyene, H. D., A. A. Werkneh, and T. G. Ambaye. 2018. Current updates on waste to energy (WtE) technologies: A review. Renewable Energy Focus 24:1–11. doi:10.1016/j.ref.2017.11.001.
  • Burnley, S., R. Phillips, T. Coleman, and T. Rampling. 2011. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom. Waste Management (new York, N.Y.) 31:1949–59. doi:10.1016/j.wasman.2011.04.015.
  • Cao, Y., L. Fu, and A. Mofrad. 2019. Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute. doi:10.1016/j.joei.2019.01.006.
  • Cimpan, C., and H. Wenzel. 2013. Energy implications of mechanical and mechanical–Biological treatment compared to direct waste-to-energy. Waste Management(New York, N.Y.) 33:1648–58. doi:10.1016/j.wasman.2013.03.026.
  • Consonni, S., M. Giugliano, and M. Grosso. 2005. Alternative strategies for energy recovery from municipal solid waste part A: Mass and energy balances. Waste Management (new York, N.Y.) 25:123–35. doi:10.1016/j.wasman.2004.09.007.
  • Consonni, S., M. Giugliano, A. Massarutto, M. Ragazzi, and C. Saccani. 2011. Material and energy recovery in integrated waste management systems: Project overview and main results. Waste Management(New York, N.Y.) 31:2057–65. doi:10.1016/j.wasman.2011.04.016.
  • Consonni, S., and F. Viganò. 2012. Waste gasification vs. conventional waste-to-energy: A comparative evaluation of two commercial technologies. Waste Management (new York, N.Y.) 32:653–66. doi:10.1016/j.wasman.2011.12.019.
  • De Greef, J., K. Villani, J. Goethals, H. Van Belle, J. Van Caneghem, and C. Vandecasteele. 2013. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to- energy plants. Waste Management(New York, N.Y.) 33:2416–24. doi:10.1016/j.wasman.2013.05.026.
  • Dong, J., Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni, and Z. Zhou. 2018. Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production 203:287–300. doi:10.1016/j.jclepro.2018.08.139.
  • Gabbar, H. A., M. Aboughaly, and N. Ayoub. 2018. Comparative study of MSW heat treatment processes and electricity generation. Journal of the Energy Institute 91:481–88. doi:10.1016/j.joei.2017.04.009.
  • Gohlke, O., and J. Martin. 2007. Drivers for innovation in waste-to-energy technology. Waste Management & Research 25:214–19. doi:10.1177/0734242X07079146.
  • Hla, S. S., and D. Roberts. 2015. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Management(New York, N.Y.) 41:12–19. doi:10.1016/j.wasman.2015.03.039.
  • Ionescu, G., E. C. Rada, M. Ragazzi, C. Mărculescu, A. Badea, and T. Apostol. 2013. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Conversion and Management 76:1083–92. doi:10.1016/j.enconman.2013.08.049.
  • Lombardi, L., E. Carnevale, and A. Corti. 2015. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management (new York, N.Y.) 37:26–44. doi:10.1016/j.wasman.2014.11.010.
  • Materazzi, M., P. Lettieri, R. Taylor, and C. Chapman. 2016. Performance analysis of RDF gasification in a two stage fluidized bed–Plasma process. Waste Management (new York, N.Y.) 47:256–66. doi:10.1016/j.wasman.2015.06.016.
  • Murer, M. J., H. Spliethoff, C. M. W. D. Waal, S. Wilpshaar, B. Berkhout, M. A. J. V. Berlo, O. Gohlke, and J. J. E. Martin. 2011. High efficient waste-to-energy in Amsterdam: Getting ready for the next steps. Waste Management & Research 29:20–29. doi:10.1177/0734242X11413334.
  • Nam-Chol, O., P. Hyo–Song, S. Yong–Chol, R. Yong–Hyok, and K. A. Yong–Nam.2018b. Assessment of environmental burdens for municipal solid waste management options. Waste and Resource Management 170:139–48.
  • Nam-Chol, O., and W. G. Kim. 2017. Investigation of characterization of municipal solid waste for refused-derived fuel, a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:1671–78.
  • Nam–Chol, O., H. S. Pak, Y. C. Sin, Y. H. Ri, and Y. N. Kim. 2018a. A feasibility study of energy recovery of RDF from municipal solid waste. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40:2914–22. doi:10.1080/15567036.2018.1514431.
  • Násner, A. M. L., E.E.S. Lora, J.C.E.Palacio, M.H. Rocha, J.C. Restrepo, O.J. Venturini and A. Ratner. 2017. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Waste Management(New York, N.Y.) 69:187–201. doi:10.1016/j.wasman.2017.08.043.
  • Pavlas, M., M. Touš, P. Klimek, and L. Bébar. 2011. Waste incineration with production of clean and reliable energy. Clean Technologies and Environmental Policy 13:595–605. doi:10.1007/s10098-011-0353-5.
  • Psomopoulos, C. S., and N. J. Themelis. 2015. The combustion of as-received and pre-processed (RDF/SRF) municipal solid wastes as fuel for the power sector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37:1813–20. doi:10.1080/15567036.2011.639845.
  • Rotter, V. S., T. Kost, J. Winkler, and B. Bilitewski. 2004. Material flow analysis of RDF-production processes. Waste Management (new York, N.Y.) 24:1005–21. doi:10.1016/j.wasman.2004.07.015.
  • Stehlík, P. 2012. Up-to-date technologies in waste to energy field. Review of Chemical Engineering 28:223–42. doi:10.1515/revce-2012-0013.
  • Ye, J., D. Li, Y. Sun, G. Wang, Z. Yuan, F. Zhen, and Y. Wang. 2013. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management 33:2653–58. doi:10.1016/j.wasman.2013.05.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.