528
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Detailed comparison of the methods used in the heat transfer coefficient and pressure loss calculation of shell side of shell and tube heat exchangers with the experimental results

, ORCID Icon &
Pages 5661-5680 | Received 28 Mar 2019, Accepted 12 Jul 2019, Published online: 03 Oct 2019

References

  • Ambekar, A. S., R. Sivakumar, N. Anantharaman, and M. Vivekenandan. 2016. CFD simulation study of shell and tube heat exchangers with different baffle segment configurations. Applied Thermal Engineering 108:999–1007. doi:10.1016/j.applthermaleng.2016.08.013.
  • Andrews, R., and J. M. Pearce. 2011. Environmental and economic assessment of a greenhouse waste heat exchange. Journal of Cleaner Production 19 (13):1446–54. doi:10.1016/j.jclepro.2011.04.016.
  • Aslam Bhutta, M. M., N. Hayat, M. H. Bashir, A. R. Khan, K. N. Ahmad, and S. Khan. 2012. CFD applications in various heat exchangers design: A review. Applied Thermal Engineering 32 (1):1–12. doi:10.1016/j.applthermaleng.2011.09.001.
  • Benarji, N., C. Balaji, and S. P. Venkateshan. 2008. Optimum design of cross-flow shell and tube heat exchangers with low fin tubes. Heat Transfer Engineering 29 (10):864–72. doi:10.1080/01457630802125724.
  • Bichkar, P., O. Dandgaval, P. Dalvi, R. Godase, and T. Dey. 2018. Study of shell and tube heat exchanger with the effect of types of baffles. Procedia Manufacturing 20:195–200. doi:10.1016/j.promfg.2018.02.028.
  • Coker, A. K. 2015. Process integration and heat exchanger networks. In Ludwig’s Applied Process Design for Chemical and Petrochemical Plants, 491–622. Texas: Gulf Professional Publishing .
  • Coulson, J. M., and J. F. Richardson. 2002. Coulson & Richardson’s Chemıcal Engineering. 4th edited by R. P. ChhabraBasavaraj Gurappa, Vol. 6. Elsevier.
  • Dezfoli, A. R. A., and M. A. Mehrabian. 2009. The overall heat transfer characteristics of a double-pipe heat exchanger. Heat Transfer Research 40 (6):555–70. doi:10.1615/HeatTransRes.v40.i6.
  • Dou, Y., S. Ohnishi, M. Fujii, T. Togawa, T. Fujita, H. Tanikawa, and L. Dong. 2018. Feasibility of developing heat exchange network between incineration facilities and industries in cities: Case of Tokyo Metropolitan Area. Journal of Cleaner Production 170:548–58. doi:10.1016/j.jclepro.2017.09.147.
  • Du, B. C., Y. L. He, K. Wang, and H. H. Zhu. 2017. Convective heat transfer of molten salt in the shell-and-tube heat exchanger with segmental baffles. International Journal of Heat and Mass Transfer 113:456–65. doi:10.1016/j.ijheatmasstransfer.2017.05.075.
  • Duan, Z., F. Shen, X. Cao, and J. Zhang. 2016. Comprehensive effects of baffle configuration on the performance of heat exchanger with helical baffles. Nuclear Engineering and Design 300:349–57. doi:10.1016/j.nucengdes.2016.02.010.
  • Eiamsa-ard, S., K. Kiatkittipong, and W. Jedsadaratanachai. 2015. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Engineering Science and Technology, an International Journal 18 (3):336–50. doi:10.1016/j.jestch.2015.01.008.
  • El Maakoul, A., A. Laknizi, S. Saadeddine, M. El Metoui, A. Zaite, M. Meziane, and A. Ben Abdellah. 2016. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles. Applied Thermal Engineering 109:175–85. doi:10.1016/j.applthermaleng.2016.08.067.
  • Fesanghary, M., E. Damangir, and I. Soleimani. 2009. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering 29 (5–6):1026–31. doi:10.1016/j.applthermaleng.2008.05.018.
  • Gaddis, E. S., and V. Gnielinski. 1997. Pressure drop on the shell side of shell-and-tube heat exchangers with segmental baffles. Chemical Engineering and Processing: Process Intensification 36 (2):149–59. doi:10.1016/S0255-2701(96)04194-3.
  • Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. 2014. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable & Sustainable Energy Reviews 37:168–81. doi:10.1016/j.rser.2014.05.004.
  • Jamshidi, N., and N. Sadafi. 2019. An evaluation for spiral coil type earth-air heat exchanger at different climate conditions. Energy Sources Part A Recovery Utilization and Environmental Effects 1–18. doi: 10.1080/15567036.2019.1623942.
  • Kapale, U. C., and S. Chand. 2006. Modeling for shell-side pressure drop for liquid flow in shell-and-tube heat exchanger. International Journal of Heat and Mass Transfer 49 (3–4):601–10. doi:10.1016/j.ijheatmasstransfer.2005.08.022.
  • Kara, Y. A., and Ö. Güraras. 2004. A computer program for designing of shell-and-tube heat exchangers. Applied Thermal Engineering 24 (13):1797–805. doi:10.1016/j.applthermaleng.2003.12.014.
  • Kayabaşı, E., M. Kolukısa, and H. Kurt. 2015. Static simulation of heat exchanger circuit of cumene production. Academic Platform Journal of Engineering and Science 3 (2):26–32. doi:10.5505/apjes.2015.24865.
  • Kayabasi, E., and H. Kurt. 2018. Simulation of heat exchangers and heat exchanger networks with an economic aspect. Engineering Science and Technology, an International Journal 21 (1):70–76. doi:10.1016/j.jestch.2018.02.006.
  • Kumar, S., and P. Dinesha. 2018. Numerical study of the influence of design parameters on heat transfer in a helically coiled heat exchanger. Heat Transfer Research 49 (15):1431–43. doi:10.1615/HeatTransRes.v49.i15.
  • Kuppan, T. 2000. Heat exchanger design handbook. 2nd ed. Taylor & Francis Group. Boca Raton: CRC Press.
  • Lei, Y., Y. Li, S. Jing, C. Song, Y. Lyu, and F. Wang. 2017. Design and performance analysis of the novel shell-and-tube heat exchangers with louver baffles. Applied Thermal Engineering 125:870–79. doi:10.1016/j.applthermaleng.2017.07.081.
  • Milcheva, I., F. Heberle, and D. Brüggemann. 2017. Modeling and simulation of a shell-and-tube heat exchanger for organic rankine cycle systems with double-segmental baffles by adapting the Bell-Delaware method. Applied Thermal Engineering 126:507–17. doi:10.1016/j.applthermaleng.2017.07.020.
  • Mirzaei, M., H. Hajabdollahi, and H. Fadakar. 2017. Multi-objective optimization of shell-and-tube heat exchanger by constructal theory. Applied Thermal Engineering 125:9–19. doi:10.1016/j.applthermaleng.2017.06.137.
  • Mohanty, D. K. 2016a. Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. International Journal of Thermal Sciences 102:228–38. doi:10.1016/j.ijthermalsci.2015.12.002.
  • Mohanty, D. K. 2016b. Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger. Applied Thermal Engineering 107:184–93. doi:10.1016/j.applthermaleng.2016.06.133.
  • Ozden, E., and I. Tari. 2010. Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conversion and Management 51 (5):1004–14. doi:10.1016/j.enconman.2009.12.003.
  • Pačíska, T., V. Turek, Z. Jegla, and B. Kilkovský. 2014. Suitability of some commonly available software for unconventional condenser analysis. Applied Thermal Engineering 70 (2):1195–201. doi:10.1016/j.applthermaleng.2014.04.061.
  • Pal, E., I. Kumar, J. B. Joshi, and N. K. Maheshwari. 2016. CFD simulations of shell-side flow in a shell-and-tube type heat exchanger with and without baffles. Chemical Engineering Science 143:314–40. doi:10.1016/j.ces.2016.01.011.
  • Parikshit, B., K. R. Spandana, V. Krishna, T. R. Seetharam, and K. N. Seetharamu. 2015. A simple method to calculate shell side fluid pressure drop in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer 84:700–12. doi:10.1016/j.ijheatmasstransfer.2015.01.068.
  • Perdomo-Hurtado, L., J. S. Rincon Tabares, D. M. Correa, and F. A. Perdomo. 2017. Castor oil preheater selection based on entropy generation and exergy effectiveness criteria. Energy 120:805–15. doi:10.1016/j.energy.2016.11.128.
  • Prithiviraj, M., and M. J. Andrews. 1999. Comparison of a three-dimensional numerical model with existing methods for prediction of flow in shell-and-tube heat exchangers. Heat Transfer Engineering 20 (2):15–19. doi:10.1080/014576399271538.
  • Rakib, M. I., R. Saidur, E. N. Mohamad, and A. M. Afifi. 2017. Waste-heat utilization – the sustainable technologies to minimize energy consumption in Bangladesh textile sector. Journal of Cleaner Production 142:1867–76. doi:10.1016/j.jclepro.2016.11.098.
  • Ramadan, M., M. Khaled, H. Jaber, J. Faraj, H. Bazzi, and T. Lemenand. 2019. Numerical simulation of multi-tube tank heat exchanger: Optimization analysis. Energy Sources Part A Recovery Utilization and Environmental Effects 1–11. doi: 10.1080/15567036.2019.1623939.
  • Rao, R. V., and A. Saroj. 2017. Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration. Applied Thermal Engineering 116:473–87. doi:10.1016/j.applthermaleng.2017.01.071.
  • Rouag, A., A. Benchabane, and C. E. Mehdid. 2018. Thermal design of earth-to-air heat exchanger. Part I a new transient semi-analytical model for determining soil temperature. Journal of Cleaner Production 182:538–44. doi:10.1016/j.jclepro.2018.02.089.
  • Salahuddin, U., M. Bilal, and H. Ejaz. 2015. A review of the advancements made in helical baffles used in shell and tube heat exchangers. International Communications in Heat and Mass Transfer 67:104–08. doi:10.1016/j.icheatmasstransfer.2015.07.005.
  • Serna, M., and A. Jiménez. 2005. A compact formulation of the Bell-Delaware method for heat exchanger design and optimization. Chemical Engineering Research and Design 83 (5):539–50. doi:10.1205/cherd.03192.
  • Serna-González, M., J. M. Ponce-Ortega, A. J. Castro-Montoya, and A. Jiménez-Gutiérrez. 2007. Feasible design space for shell-and-tube heat exchangers using the bell - Delaware method. Industrial & Engineering Chemistry Research 46 (1):143–55. doi:10.1021/ie051371x.
  • Serth, R. W. 2007. Process heat transfer principles and applications. Elsevier: Academic Press.
  • Shinde, S., and U. Chavan. 2018. Numerical and experimental analysis on shell side thermo-hydraulic performance of shell and tube heat exchanger with continuous helical FRP baffles. Thermal Science and Engineering Progress 5 (September 2017):158–71. doi:10.1016/j.tsep.2017.11.006.
  • Short, M., A. J. Isafiade, D. M. Fraser, and Z. Kravanja. 2016. Synthesis of heat exchanger networks using mathematical programming and heuristics in a two-step optimisation procedure with detailed exchanger design. Chemical Engineering Science 144:372–85. doi:10.1016/j.ces.2016.01.045.
  • Tahery, A. A., S. Khalilarya, and S. Jafarmadar. 2017. Effectively designed NTW shell-tube heat exchangers with segmental baffles using flow hydraulic network method. Applied Thermal Engineering 120:635–44. doi:10.1016/j.applthermaleng.2017.04.033.
  • TEMA (Tubular Exchanger Manufactures Association). 2007. Standards of the Tubular Exchanger Manufacturers Assocciation,New York.
  • Tharakeshwar, T. K., K. N. Seetharamu, and B. Durga Prasad. 2017. Multi-objective optimization using bat algorithm for shell and tube heat exchangers. Applied Thermal Engineering 110:1029–38. doi:10.1016/j.applthermaleng.2016.09.031.
  • Vahdat Azad, A., and N. Vahdat Azad. 2016. Application of nanofluids for the optimal design of shell and tube heat exchangers using genetic algorithm. Case Studies in Thermal Engineering 8:198–206. doi:10.1016/j.csite.2016.07.004.
  • Wen, J., H. Yang, G. Jian, X. Tong, K. Li, and S. Wang. 2016. Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging metamodel based on MOGA. International Journal of Heat and Mass Transfer 98:29–39. doi:10.1016/j.ijheatmasstransfer.2016.02.084.
  • Zhang, J. F., Y. L. He, and W. Q. Tao. 2009. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles - Part I: Numerical model and results of whole heat exchanger with middle-overlapped helical baffles. International Journal of Heat and Mass Transfer 52 (23–24):5371–80. doi:10.1016/j.ijheatmasstransfer.2009.07.006.
  • Zhang, J. F., B. Li, W. J. Huang, Y. G. Lei, Y. L. He, and W. Q. Tao. 2009. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles. Chemical Engineering Science 64 (8):1643–53. doi:10.1016/j.ces.2008.12.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.