359
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Feasibility study of TEG-integrated biomass cook stove for electrical power generation specific to rural areas with inadequate electricity

&
Pages 5714-5735 | Received 01 Jan 2019, Accepted 12 Jul 2019, Published online: 14 Oct 2019

References

  • Adkins, E., K. Oppelstrup, and V. Modi. 2012. Rural household energy consumption in the millennium villages in Sub-Saharan Africa. Energy for Sustainable Development 16:249–59. doi:10.1016/j.esd.2012.04.003.
  • Apte, K., and S. Salvi. 2016. Household air pollution and its effects on health. F1000Research 5:2593. doi:10.12688/f1000research.
  • Assam Energy Development Agency. Government of Assam, Accessed on 14.08.2017 from https://aeda.assam.gov.in/.
  • Bansal, M., R. P. Saini, and D. K. Khatod. 2013. Development of cooking sector in rural areas in India - A review. Renewable and Sustainable Energy Reviews 17:44–53. doi:10.1016/j.rser.2012.09.014.
  • Barnes, D. F., K. Openshaw, K. R. Smith, and R. Van der Plas. 1994. What makes people cook with improved biomass stoves.
  • Bruce, N., R. Perez-Padilla, and R. Albalak. 2000. Indoor air pollution in developing countries: A major environmental and public health challenge. Bulletin of the World Health Organization.78:1078–92.
  • Champier, D. 2017. Thermoelectric generators: A review of applications. Energy Conversion and Management 140:167–81. doi:10.1016/j.enconman.2017.02.070.
  • Champier, D., J. P. Bedecarrats, M. Rivaletto, and F. Strub. 2010. Thermoelectric power generation from biomass cook stoves. Energy 35 (2):935–42. doi:10.1016/j.energy.2009.07.015.
  • Christidis, G. C., I. C. Karatzaferis, I. I. Perpinias, M. Sautreuil, G. Bezes, N. P. Papanikolaou, M. Loupis, I. Spanoudakis, and E. C. Tatakis. 2012. Innovative waste heat recovery systems in rotorcrafts. Electrical Systems for Aircraft, Railway and Ship Propulsion, ESARS. doi:10.1094/PDIS-11-11-0999-PDN.
  • Das, K., M. Hiloidhari, D. C. Baruah, and S. Nonhebel. 2018. Impact of time expenditure on household preferences for cooking fuels. Energy 151:309–16. doi:10.1016/j.energy.2018.03.048.
  • Elefsiniotis, A., N. Kokorakis, T. Becker, and U. Schmid. 2013. Design and material aspects for thermoelectric energy harvesting devices in aircrafts. Proceedings Volume 8763, Smart Sensors, Actuators, and MEMS VI; 8763IN (2013). SPIE Microtechnologies, 2013 Grenoble, France. doi:10.1117/12.2017311.
  • G. Tracking. 2017. Global tracking framework.
  • Geller, H. S. 1982. Fuel efficiency and performance of traditional and innovative cookstoves. Proceedings of the Indian Academy of Sciences, Section C: Engineering Sciences 5 (4):373–93.
  • Gogoi, B., and D. C. Baruah. 2016. Steady state heat transfer modeling of solid fuel biomass stove: Part 1. Energy 97:283–95. doi:10.1016/j.energy.2015.12.130.
  • Goudarzi, A. M., P. Mazandarani, R. Panahi, H. Behsaz, A. Rezania, and L. A. Rosendahl. 2013. Integration of thermoelectric generators and wood stove to produce heat, hot water, and electrical power. Journal of Electronic Materials 42 (7):2127–33.
  • Goupil, C. 2016. Continuum theory and modeling of thermoelectric elements. Weinheim, Germany: Wiley-VCH Verlag GmbH  & Co.
  • Grover, P. D., and S. K. Mishram, Regional wood energy development programme in Asia GCP/RAS/154/NET, Proceedings of the international workshop on Biomass Briquetting, New Delhi, India, 3-6 April 1995. Accessed on 22.07.2017 from https://ris.utwente.nl/ws/files/5380093/Grover95proceedings.pdf
  • Gupta, S., A. Kankaria, and B. Nongkynrih. 2014. Indoor air pollution in India: Implications on health and its control. Indian Journal of Community Medicine 39 (4):203. doi:10.4103/0970-0218.143019.
  • Hodes, M. 2005. On one-dimensional analysis of thermoelectric modules (TEMs). IEEE Transactions on Components and Packaging Technologies 28:218–29. doi:10.1109/TCAPT.2005.848532.
  • Honkalaskar, V. H., M. Sohoni, and U. V. Bhandarkar. 2014. Thermo-chemical modelling of a village cookstove for design improvement. Combustion Theory and Modelling 18 (3):414–53. doi:10.1080/13647830.2014.921730.
  • I. E. Agency. 2017. Energy access outlook 2017, from poverty to prosperity [Online]. Accessed August 23, 2018. https://www.iea.org/publications/freepublications/publication/WEO2017SpecialReport_EnergyAccessOutlook.pdf.
  • Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. 2007. Fundamentals of heat and mass transfer, 6th ed. USA: John Wiley & Sons.
  • Islam, F., R. Sarma, A. Debroy, S. Kar, and R. Pal. 2013. Profiling acute respiratory tract infections in children from Assam, India. Journal of Global Infectious Diseases 5 (1): 8–14. doi: 10.4103/0974-777X.107167
  • Jan, I. 2012. What makes people adopt improved cookstoves? Empirical evidence from rural northwest Pakistan. Renewable and Sustainable Energy Reviews 16:3200–05. doi:10.1016/j.rser.2012.02.038.
  • Jang, J.-Y., and Y.-C. Tsai. 2013. Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system. Applied Thermal Engineering 51:677–89. doi:10.1016/j.applthermaleng.2012.10.024.
  • Johansson, M. T., and M. Söderström. 2014. Electricity generation from low-temperature industrial excess heat-an opportunity for the steel industry. Energy Efficiency 7:203–15. doi:10.1007/s12053-013-9218-6.
  • Kar, A., I. H. Rehman, J. Burney, S. P. Puppala, R. Suresh, L. Singh, V. K. Singh, T. Ahmed, N. Ramanathan, and V. Ramanathan. 2012. Real-time assessment of black carbon pollution in Indian households due to traditional and improved biomass cookstoves. Environmental Science & Technology.46 (5), 2993–3000.
  • Khandelwal, M., M. E. Hill, P. Greenough, J. Anthony, M. Quill, M. Linderman, and H. S. Udaykumar. 2017. Why have improved cook-stove initiatives in India failed? World Development 92:13–27. doi:10.1016/j.worlddev.2016.11.006.
  • Khandker, S. R., H. A. Samad, R. Ali, and D. F. Barnes. 2014. Who benefits most from rural electrification? Evidence in India. The Energy Journal 35: doi:10.5547/ISSN0195-6574-EJ.
  • Killander, Anders, and John C. Bass. “A stove-top generator for cold areas.” In Fifteenth International Conference on Thermoelectrics. Proceedings ICT'96, pp. 390–393. IEEE, 1996.
  • Kinsella, C. E., S. M. O’Shaughnessy, M. J. Deasy, M. Duffy, and A. J. Robinson. 2014. Battery charging considerations in small scale electricity generation from a thermoelectric module. Applied Energy 114:80–90. doi:10.1016/j.apenergy.2013.09.025.
  • Kumar, A., M. Prasad, and K. P. Mishra. 2015. Historical review of biomass cook stove development. International Journal of Community Science and Technology 1 (1):75–79.
  • Kuroki, T., K. Kabeya, K. Makino, T. Kajihara, H. Kaibe, H. Hachiuma, H. Matsuno, and A. Fujibayashi. 2014. Thermoelectric generation using waste heat in steel works. Journal of Electronic Materials 43:2405–10. doi:10.1007/s11664-014-3094-5.
  • Lertsatitthanakorn, C. 2007. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresource Technology 98:1670–74.
  • Lineykin, S., and S. Ben-Yaakov. 2007. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications 43:505–12. doi:10.1109/TIA.2006.889813.
  • Ma, H.-K., C.-P. Lin, H.-P. Wu, C.-H. Peng, and -C.-C. Hsu. 2015. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Applied Thermal Engineering 88:274–79. doi:10.1016/j.applthermaleng.2014.09.070.
  • Mal, R., R. Prasad, and V. K. Vijay. 2014. Renewable energy from biomass cookstoves for off grid rural areas. International Proceedings of Chemical, Biological and Environmental Engineering 64:113–17.
  • Mal, R., R. Prasad, and V. K. Vijay. 2015. Design and testing of thermoelectric generator embedded clean forced draft biomass cookstove. 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings, Rome, Italy.
  • Mal, R., R. Prasad, and V. K. Vijay. 2016. Multi-functionality clean biomass cookstove for off-grid areas. Process Safety and Environmental Protection 104:85–94. doi:10.1016/j.psep.2016.08.003.
  • Mal, R., R. Prasad, V. K. Vijay, and A. R. Verma. 2015. The design, development and performance evaluation of thermoelectric generator (TEG) integrated forced draft biomass cookstove. Procedia Computer Science 52 (Seit):723–29. doi:10.1016/j.procs.2015.05.085.
  • Manchester, S. C., and L. G. Swan. 2013. Off-grid mobile phone charging: An experimental study. Energy for Sustainable Development 17:564–71. doi:10.1016/j.esd.2013.10.003.
  • Maneewan, S., C. Punlek, S. Chindaraksa, R. Charoenwat, and C. Lertsatitthanakorn. 2013. Hybrid producer gas using biomass combined thermoelectric. Applied Mechanics and Materials 448–453:1644–50. doi:10.4028/www.scientific.net/AMM.448-453.
  • Mechtenberg, A. R., K. Borchers, E. W. Miyingo, F. Hormasji, A. Hariharan, J. V. Makanda, and M. K. Musaazi. 2012. Human power (HP) as a viable electricity portfolio option below 20W/Capita. Energy for Sustainable Development 16:125–45. doi:10.1016/j.esd.2011.12.006.
  • Ministry of Power, Government of India, Rural electricity Supply, Retrieved on 21.03.2019 from http://powermin.nic.in/sites/default/files/uploads/RS27032018_Eng.pdf. 2018
  • Mirhosseini, M., A. Rezania, and L. Rosendahl. 2019. Harvesting waste heat from cement kiln shell by thermoelectric system. Energy 168:358–69. doi:10.1016/j.energy.2018.11.109.
  • Mobarak, A. M., P. Dwivedi, R. Bailis, L. Hildemann, and G. Miller. 2012. Low demand for nontraditional cookstove technologies. Proceedings of the National Academy of Sciences 109 (27):10815–20. doi:10.1073/pnas.1115571109.
  • Mohan, R., and S. Kumar. 2017. Enhancement of thermal efficiency of traditional Indian cooking furnace (Chulha). Current World Environment 1 (1):61–66. doi:10.12944/CWE.6.1.07.
  • Murali, R., S. Malhotra, D. Palit, and K. Sasmal. 2015. Socio-technical assessment of solar photovoltaic systems implemented for rural electrification in selected villages of Sundarbans region of India. Master's Thesis, Department of Energy and Environment, Teri University, India. 2015.
  • Muthu, G., S. Shanmugam, and A. Veerappan. 2019. Theoretical and experimental study on a thermoelectric generator using concentrated solar thermal energy. Journal of Electronic Materials 48:2876–85. doi:10.1007/s11664-019-07024-w.
  • Narducci, D., P. Bermel, B. Lorenzi, N. Wang, and K. Yazawa. 2018. Solar thermoelectric generators. In Springer series in materials science. New York, NY: Springer, Cham.
  • Novikov, A., D. Uglanov, and A. Dovgyallo. 2015. Efficiency estimation of thermoelectric generators application in the liquefied natural gas gasifiers. Applied Mechanics and Materials 789–790:268–72. doi:10.4028/www.scientific.net/AMM.789-790.
  • Nuwayhid, R. Y., A. Shihadeh, and N. Ghaddar. 2005. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management 46 (9–10):1631–43. doi:10.1016/j.enconman.2004.07.006.
  • Nuwayhid, R. Y., D. M. Rowe, and G. Min. 2003. Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renewable Energy 28 (2):205–22. doi:10.1016/S0960-1481(02)00024-1.
  • O’Brien, R. C., R. M. Ambrosi, N. P. Bannister, S. D. Howe, and H. V. Atkinson. 2008. Safe radioisotope thermoelectric generators and heat sources for space applications. Journal of Nuclear Materials 377:506–21. doi:10.1016/j.jnucmat.2008.04.009.
  • O’Shaughnessy, S. M., M. J. Deasy, J. V. Doyle, and A. J. Robinson. 2014. Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy for Sustainable Development 20 (1):1–10. doi:10.1016/j.esd.2014.01.009.
  • O’Shaughnessy, S. M., M. J. Deasy, J. V. Doyle, and A. J. Robinson. 2015. Adaptive design of a prototype electricity-producing biomass cooking stove. Energy for Sustainable Development 28:41–51. doi:10.1016/j.esd.2015.06.005.
  • Patowary, R., and D. C. Baruah. 2018. Thermoelectric conversion of waste heat from IC engine-driven vehicles: A review of its application, issues, and solutions. International Journal of Energy Research 42:2595–614. doi:10.1002/er.v42.8.
  • Punin, W., S. Maneewan, and C. Punlek. 2019. Heat transfer characteristics of a thermoelectric power generator system for low-grade waste heat recovery from the sugar industry. Heat and Mass Transfer 55:979–91. doi:10.1007/s00231-018-2481-5.
  • Raman, P., N. K. Ram, and R. Gupta. 2014. Development, design and performance analysis of a forced draft clean combustion cookstove powered by a thermo electric generator with multi-utility options. Energy 69:813–25. doi:10.1016/j.energy.2014.03.077.
  • Ravindra, K. 2019. Emission of black carbon from rural households kitchens and assessment of lifetime excess cancer risk in villages of North India. Environment International 122:201–12. doi:10.1016/j.envint.2018.11.008.
  • Riffat, S. B., and X. Ma. 2003. Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering 23:913–35. doi:10.1016/S1359-4311(03)00012-7.
  • Rowe, M. D., G. Min, S. G. Williams, A. Aoune, K. Matsuura, V. L. Kuznetsov, and L. W Fu. (1997, July). Thermoelectric recovery of waste heat-case studies. In IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No. 97CH6203) (Vol. 2, pp. 1075–1079). IEEE.Location: Honolulu, HI, USA, USA
  • Saastamoinen, J. J., R. Taipale, M. Horttanainen, and P. Sarkomaa. 2000. Propagation of the ignition front in beds of wood particles. Combustion and Flame 123:214–26. doi:10.1016/S0010-2180(00)00144-9.
  • Samson, D., T. Otterpohl, M. Kluge, U. Schmid, and T. Becker. 2010. Aircraft-specific thermoelectric generator module. Journal of Electronic Materials 39:2092–95. doi:10.1007/s11664-009-0997-7.
  • Sarmah, C. K., and B. Bhagawati. 2014. Impact of biomass fuels on health of women and children in rural Assam: A statistical study. Indian Journal of Public Health Research & Development 5:163. doi:10.5958/0976-5506.2014.00035.7.
  • Sarmah, R., M. C. Bora, and D. J. Bhattacharjee. 2002. Energy profiles of rural domestic sector in six un-electrified villages of Jorhat district of Assam. Energy 27:17–24. doi:10.1016/S0360-5442(01)00040-8.
  • Schwebel, D. C., D. Swart, J. Simpson, S. Hui, and P. Hobe. 2009b. An intervention to reduce kerosene-related burns and poisonings in low-income South African communities. Health Psychology 28:493–500. doi:10.1037/a0014531.
  • Schwebel, D. C., D. Swart, S.-K. Hui, J. Simpson, and P. Hobeb. 2009a. Paraffin-related injury in low-income South African communities: Knowledge, practice and perceived risk. Bulletin of the World Health Organization 87:700–06. doi:10.2471/BLT.00.000000.
  • Shaughnessy, S. M. O., M. J. Deasy, C. E. Kinsella, J. V. Doyle, and A. J. Robinson. 2013. Small scale electricity generation from a portable biomass cookstove: Prototype design and preliminary results. Applied Energy 102:374–85. doi:10.1016/j.apenergy.2012.07.032.
  • Shaughnessy, S. M. O., M. J. Deasy, J. V. Doyle, and A. J. Robinson. 2014. Energy for sustainable development field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi. Energy for Sustainable Development 20:1–10. doi:10.1016/j.esd.2014.01.009.
  • Snyder, G. J., and E. S. Toberer. 2008. Complex thermoelectric materials. Nature Materials 7:105–14. doi:10.1038/nmat2090.
  • Sun, D., L. Shen, Y. Yao, H. Chen, S. Jin, and H. He. 2017. The real-time study of solar thermoelectric generator. Applied Thermal Engineering 119:347–59. doi:10.1016/j.applthermaleng.2017.03.075.
  • Sutar, K. B., R. Singh, A. Karmakar, and V. Rathore. 2019. Experimental investigation on thermal performance of three natural draft biomass cookstoves. Energy Efficiency 12:749–55. doi:10.1007/s12053-018-9705-x.
  • Sustainable energy for all, Global Tracking Framework, 2017, http://gtf.esmap.org/data/files/download-documents/eegp1701_gtf_full_report_for_web_0516.pdf, Accessed on 21/8/2017
  • Wallmo, K., and S. K. Jacobson. 1998. A social and environmental evaluation of fuel-efficient cook-stoves and conservation in Uganda. Environmental Conservation 25:99–108. doi:10.1017/S0376892998000150.
  • Wang, N., L. Han, H. He, N.-H. Park, and K. Koumoto. 2011. A novel high-performance photovoltaic-thermoelectric hybrid device. Energy & Environmental Science 4:3676. doi:10.1039/c1ee01646f.
  • World Health Organization. 2005. WHO Air Quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005 summary of risk assessment (No. WHO/SDE/PHE/OEH/06.02). Geneva: World Health Organization.
  • Yazawa, K., A. Shakouri, and T. J. Hendricks. 2017. Thermoelectric heat recovery from glass melt processes. Energy 118:1035–43. doi:10.1016/j.energy.2016.10.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.