280
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal energy storage using composite phase change materials with molten salt particles encapsulated/ceramic composite by sol-gel method

, , , , , , & show all
Pages 5736-5746 | Received 22 Feb 2019, Accepted 12 Jul 2019, Published online: 29 Sep 2019

References

  • Anish, M., T. Arunkumar, B. Kanimozhi, J. Jayaprabakar, N. Beemkumar, and V. Jayaprakash. 2018. Experimental exploration and theoretical certainty of thermal conductivity and viscosity of MgO-therminol 55 nanofluid. Energy Sources Part A Recovery Utilization and Environmental Effects 2018:1–17. doi:10.1080/15567036.2018.1520329.
  • Cabeza, L. F., A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández. 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable & Sustainable Energy Reviews 15 (3):1675–95. doi:10.1016/j.rser.2010.11.018.
  • Fukahori, R., T. Nomura, C. Zhu, N. Sheng, N. Okinaka, and T. Akiyama. 2016. Macro-encapsulation ofmetallic phase change material using cylindrical-type ceramic containers for hightemperature thermal energy storage. Apply Energy 170:324–28. doi:10.1016/j.apenergy.2016.02.106.
  • Garcia, P., M. Olcese, and S. Rougé. 2015. Experimental and numerical investigation of a pilot scale latent heat thermal energy storage for CSP power plant. Energy Procedia 69:842–49. doi:10.1016/j.egypro.2015.03.102.
  • Gimenez, P., and S. Fereres. 2017. Glass encapsulated phase change materials for high temperature thermal energy storage. Renewable Energy 107:497–507. doi:10.1016/j.renene.2017.02.005.
  • Jacob, R., and F. Bruno. 2016. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews 48:79–87. doi:10.1016/j.rser.2015.03.038.
  • Redkin, A., Y. Zaikov, O. Tkacheva, and S. Kumkov. 2016. Molar thermal conductivity of molten salts. Ionics 22 (1):143–49. doi:10.1007/s11581-015-1592-y.
  • Shin, D., and D. Banerjee. 2010. Enhanced of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal energy storage applications silica nanofluids. International Journal of Heat and Mass Transfer 54 (5):1064‒1071. doi:10.1016/j.ijheatmasstransfer.2010.11.017.
  • Shin, D., and D. Banerjee. 2014. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. International Journal of Heat and Mass Transfer 74 (5):210‒214. doi:10.1016/j.ijheatmasstransfer.2014.02.066.
  • Ueki, Y., N. Fujita, M. Kawai, and M. Shibahara. 2018. Molten salt thermal conductivity enhancement by mixing nanoparticles. Fusion Engineering and Design S0920379618304150. doi:10.1016/j.fusengdes.2018.04.121.
  • Ueki, Y., N. Fujita, M. Kawai, and M. Shibahara. 2017. Thermal conductivity of molten salt-based nanofluid. Aip Advances 7 (5):718–136. doi:10.1063/1.4984770.
  • Wei, X., Y. Yin, B. Qin, J. Ding, and J. Lu. 2017. Thermal conductivity improvement of liquid nitrate and carbonate salts doped with MgO particles. Energy Procedia 42:407–12. doi:10.1016/j.egypro.2017.12.064.
  • Wu, Y. Z., J. L. Li, M. Wang, H. Wang, Y. Zhong, Y. Zhao, M. Wei, and Y. Li. 2018. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP. RSC Advances 8:19251–60. doi:10.1039/C8RA03019G.
  • Xu, Y., Y. L. Zhang, W. J. Zhao, M. Wang, L. K. Wen, and G. H. Leng. 2018. Research on preparation and performance of shape stable carbonate/chloride based composite phase change materials for medium and high temperatures. Inorganic Chemicals Industry 354 (5): 40–43. ( in Chinese).
  • Ye, F., Z. Ge, Y. Ding, and J. Yang. 2014. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage. Particuology 15:56–60. doi:10.1016/j.partic.2013.05.001.
  • Zhang, H., A. Balram, H. Tiznobaik, D. Shin, and S. Santhanagopalan. 2018. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage. Applied Thermal Engineering 136:268–74. doi:10.1016/j.applthermaleng.2018.02.050.
  • Zhang, X. P., S. J. Chen, G. H. Li, W. D. Xue, and J. L. Sun. 2008. Effect of nano-scale titanium dioxide additive on microstructure and sintering properties of Al2O3 ceramics. Journal of the Chinese Ceramic Society 36 (4):12–15. in Chinese. doi:10.3321/j.issn:0454-5648.2008.04.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.