192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Thermogravimetric kinetic analysis and demineralization of chars from pyrolysis of scrap tire pretreated by waste coal tar

, , , , , , , & show all
Pages 5759-5775 | Received 23 Mar 2019, Accepted 12 Jul 2019, Published online: 29 Sep 2019

References

  • Aboulkas, A., K. E. Harfi, A. E. Bouadili, M. B. Chanâa, and A. Mokhlisse. 2007. Pyrolysis kinetics of polypropylene – Morocco oil shale and their mixture. Journal of Thermal Analysis and Calorimetry 89:203–09. doi:10.1007/s10973-007-7398-z.
  • Alkhatib, R., K. Loubar, S. Awad, E. Mounif, and M. Tazerout. 2015. Effect of heating power on the scrap tires pyrolysis derived oil. Journal of Analytical and Applied Pyrolysis 116:10–17. doi:10.1016/j.jaap.2015.10.014.
  • Ariyadejwanich, P., W. Tanthapanichakoon, K. Nakagawa, S. R. Mukai, and H. Tamon. 2003. Preparation and characterization of mesoporous activated carbon from waste tires. Carbon 41:157–64. doi:10.1016/S0008-6223(02)00267-1.
  • Banar, M., A. Özkan, V. Akyıldız, Z. Çokaygil, and Ö. Onay. 2015. Evaluation of solid product obtained from tire-derived fuel (TDF) pyrolysis as carbon black. Journal of Material Cycles and Waste Management 17:125–34. doi:10.1007/s10163-014-0233-2.
  • Bičáková, O., and P. Straka. 2016. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production. Energy Conversion and Management 116:203–13. doi:10.1016/j.enconman.2016.02.069.
  • Chaala, A., H. Darmstadt, and C. Roy. 1996. Acid-base method for the demineralization of pyrolytic carbon black. Fuel Processing Technology 46:1–15. doi:10.1016/0378-3820(95)00044-5.
  • Cunliffe, A. M., and P. T. Williams. 1999. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires. Energy & Fuels 13:166–75. doi:10.1021/ef9801524.
  • European Tyre & Rubber Manufacturers’ Association (ETRMA). 2014. ELT management. Brussels, Belgium: ETRMA.
  • Fernández-Berridi, M. J., N. González, A. Mugica, and C. Bernicot. 2006. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochimica Acta 444:65–70. doi:10.1016/j.tca.2006.02.027.
  • Han, J., W. Li, D. Liu, L. Qin, W. Chen, and F. Xing. 2018. Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and Applied Pyrolysis 129:1–5. doi:10.1016/j.jaap.2017.12.016.
  • Janajreh, I., and S. S. Raza. 2015. Numerical simulation of waste tyres gasification. Waste Management & Research 33:460–68. doi:10.1177/0734242X15573656.
  • Japan Automobile Tyre Manufacturers Association (JATMA). 2013. Tyre industry of Japan 2013. Tokyo, Japan: JATMA.
  • Kumar, M., and S. R. Hari. 2000. Removal of ash from Indian Assam coking coal using sodium hydroxide and acid solutions. Energy Sources 22:187–96. doi:10.1080/00908310050014153.
  • Labaki, M., and M. Jeguirim. 2017. Thermochemical conversion of waste tyres – A review. Environmental Science and Pollution Research 24:9962–92. doi:10.1007/s11356-016-7780-0.
  • Levendis, Y. A., A. Atal, J. Carlson, Y. Dunayevskiy, and P. Vouros. 1996. Comparative study on the combustion and emissions of waste tire crumb and pulverized coal. Environmental Science & Technology 30:2742–54. doi:10.1021/es950910u.
  • Lueking, A. D., L. Pan, D. L. Narayanan, and C. E. B. Clifford. 2005. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage. Journal of Physical Chemistry B 109:12710–17. doi:10.1021/jp0512199.
  • Martínez, J. D., N. Cardona-Uribe, R. Murillo, T. García, and J. M. López. 2019. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Management 85:574–84. doi:10.1016/j.wasman.2019.01.016.
  • Martínez, J. D., A. Veses, A. M. Mastral, R. Murillo, M. V. Navarro, N. Puy, A. Artigues, J. Bartrolí, and T. García. 2014. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Processing Technology 119:263–71. doi:10.1016/j.fuproc.2013.11.015.
  • Mui, E. L. K., W. H. Cheung, M. Valix, and G. McKay. 2010. Mesoporous activated carbon from waste tyre rubber for dye removal from effluents. Microporous and Mesoporous Materials 130:287–94. doi:10.1016/j.micromeso.2009.11.022.
  • Murillo, R., E. Aylón, M. V. Navarro, M. S. Callén, A. Aranda, and A. M. Mastral. 2006. The application of thermal processes to valorise waste tyre. Fuel Processing Technology 87:143–47. doi:10.1016/j.fuproc.2005.07.005.
  • Onay, O., and H. Koca. 2015. Determination of synergetic effect in co-pyrolysis of lignite and waste tyre. Fuel 150:169–74. doi:10.1016/j.fuel.2015.02.041.
  • Ouyang, S., D. Xiong, Y. Li, L. Zou, and J. Chen. 2018. Pyrolysis of scrap tyres pretreated by waste coal tar. Carbon Resources Conversion 1:218–27. doi:10.1016/j.crcon.2018.07.003.
  • Parthasarathy, P., H. S. Choi, H. C. Park, J. G. Hwang, H. S. Yoo, B.-K. Lee, and M. Upadhyay. 2016. Influence of process conditions on product yield of waste tyre pyrolysis – A review. Korean Journal of Chemical Engineering 33:2268–86. doi:10.1007/s11814-016-0126-2.
  • Portofino, S., S. Casu, P. Iovane, A. Russo, M. Martino, A. Donatelli, and S. Galvagno. 2011. Optimizing H2 production from waste tires via combined steam gasification and catalytic reforming. Energy & Fuels 25:2232–41. doi:10.1021/ef200072c.
  • Rodriguez, I. D., M. F. Laresgoiti, and M. A. Cabrero. 2001. Pyrolysis of scrap tyres. Fuel Processing Technology 72:9–22. doi:10.1016/S0378-3820(01)00174-6.
  • Rowhani, A., and T. J. Rainey. 2016. Scrap tyre management pathways and their use as a fuel – A review. Energies 9:888. doi:10.3390/en9110888.
  • Sait, H. H., A. Hussain, A. A. Salema, and F. N. Ani. 2012. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology 118:382–89. doi:10.1016/j.biortech.2012.04.081.
  • Saleh, T. A., and V. K. Gupta. 2014. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science 211:93–101. doi:10.1016/j.cis.2014.06.006.
  • Singh, R. K., B. Ruj, A. Jana, S. Mondal, B. Jana, A. Kumar Sadhukhan, and P. Gupta. 2018. Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization. Journal of Analytical and Applied Pyrolysis 135:379–89. doi:10.1016/j.jaap.2018.08.011.
  • Sipra, A. T., N. Gao, and H. Sarwar. 2018. Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Processing Technology 175:131–47. doi:10.1016/j.fuproc.2018.02.012.
  • Slopiecka, K., P. Bartocci, and F. Fantozzi. 2012. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 97:491–97. doi:10.1016/j.apenergy.2011.12.056.
  • Suuberg, E. M., and I. Aarna. 2009. Kinetics of tire derived fuel (TDF) char oxidation and accompanying changes in surface area. Fuel 88:179–86. doi:10.1016/j.fuel.2008.07.018.
  • Tang, Y., and C. W. Curtis. 1996. Thermal and catalytic coprocessing of waste tires with coal. Fuel Processing Technology 46:195–215. doi:10.1016/0378-3820(95)00064-X.
  • Uzun, B. B., and E. Yaman. 2014. Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis. Waste Management & Research 32:961–70. doi:10.1177/0734242X14539722.
  • Wang, W. C., C. J. Bai, C. T. Lin, and S. Prakash. 2016. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine. Applied Thermal Engineering 93:330–38. doi:10.1016/j.applthermaleng.2015.09.056.
  • Williams, P. T. 2013. Pyrolysis of waste tyres: A review. Waste Management 33:1714–28. doi:10.1016/j.wasman.2013.05.003.
  • Williams, P. T., and S. Besler. 1995. Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel 74:1277–83. doi:10.1016/0016-2361(95)00083-H.
  • Wu, Z., Y. Sugimoto, and H. Kawashima. 2003. Effect of demineralization and catalyst addition on N2 formation during coal pyrolysis and on char gasification. Fuel 82:2057–64. doi:10.1016/S0016-2361(03)00187-X.
  • Xu, S., D. Lai, X. Zeng, L. Zhang, Z. Han, J. Cheng, R. Wu, O. Mašek, and G. Xu. 2018. Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals. Carbon Resources Conversion 1:228–37. doi:10.1016/j.crcon.2018.10.001.
  • Zebala, J., P. Ciepka, A. Reza, and R. Janczur. 2007. Influence of rubber compound and tread pattern of retreaded tyres on vehicle active safety. Forensic Science International 167:173–80. doi:10.1016/j.forsciint.2006.06.051.
  • Zhang, L., B. Zhou, P. G. Duan, F. Wang, and Y. Xu. 2016. Hydrothermal conversion of scrap tire to liquid fuel. Chemical Engineering Journal 285:157–63. doi:10.1016/j.cej.2015.10.001.
  • Zhang, X., H. Li, Q. Cao, L. Jin, and F. Wang. 2018. Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management & Research 36:436–44. doi:10.1177/0734242X18764292.
  • Zhu, J., B. Shi, J. Zhu, L. Chen, J. Zhu, D. Liu, and H. Liang. 2009. Production, characterization and properties of chloridized mesoporous activated carbon from waste tyres. Waste Management & Research 27:553–60. doi:10.1177/0734242X08096137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.