153
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC

&
Pages 6062-6081 | Received 07 Mar 2019, Accepted 12 Jul 2019, Published online: 13 Mar 2020

References

  • Alam, M. S., M. A. Abido, and Z. M. Al-Hamouz. 2019. Model predictive control approach for bridge-type fault current limiter in VSC-HVDC system. Arabian Journal for Science and Engineering 44 (3):2079–89. doi:10.1007/s13369-018-3294-z.
  • Alsmadi, Y. M., L. Xu, F. Blaabjerg, A. J. P. Ortega, A. Y. Abdelaziz, A. Wang, and Z. Albataineh. 2018. Detailed investigation and performance improvement of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions. IEEE Transactions on Industry Applications 54 (5):4795–812. doi:10.1109/TIA.2018.2835401.
  • Babazadeh, H. 2013. Optimal energy management of wind power generation system in islanded micro grid system. North American Power Symposium, Denver.
  • Bektache, A., and B. Boukhezzar. 2018. Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. International Journal of Electrical Power & Energy Systems 101:92–102. doi:10.1016/j.ijepes.2018.03.012.
  • Bhende, C. N., and S. Mishra. 2011. Permanent magnet synchronous generator-based standalone wind energy supply system. IEEE Transactions on Sustainable Energy 2 (4):361–73. doi:10.1109/TSTE.2011.2159253.
  • de Matos, J. 2014. Power control in AC isolated microgrids with renewable energy sources and energy storage systems. IEEE Transactions on Industrial Electronics 62 (6):3490–98.
  • Falahi, M., S. Lotfifard, M. Ehsani, and K. Bulter-Purry. 2013. Dynamic model predictive-based energy management of DG integrated distribution systems. IEEE Transactions on Power Delivery 28 (4):2217–27. doi:10.1109/TPWRD.2013.2274664.
  • Fei, G. A. O., K. A. N. G. Ren, C. A. O. Jun, and Y. A. N. G. Tao. 2019. Primary and secondary control in DC microgrids: A review. Journal of Modern Power Systems and Clean Energy 7 (2):227–42. doi:10.1007/s40565-018-0466-5.
  • Fu, Q., L. F. Montoya, A. Solanki, A. Nasiri, V. Bhavaraju, T. Abdallah, and D. C. Yu. 2012. Micro grid generation capacity design with renewables and energy storage addressing power quality and surety. IEEE Smart Grid 3 (4):2019–27. doi:10.1109/TSG.2012.2223245.
  • Gholizadeh, M., S. Tohidi, A. Oraee, and H. Oraee. 2018. Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips. International Journal of Electrical Power & Energy Systems 95:1–10. doi:10.1016/j.ijepes.2017.07.018.
  • Green, T. C., and M. Prodanovic. 2007. Control of inverter-based micro-grids. Electric Power Systems Research Distributed Generation 77 (9):1204–13. doi:10.1016/j.epsr.2006.08.017.
  • Hossain, M. J., R. Pota, and M. Aldeen. 2014. Robust control for power sharing in microgrids with low-inertia wind and PV generators. IEEE Transactions on Sustainable Energy 6 (3):1067–77. doi:10.1109/TSTE.2014.2317801.
  • Hossain, M. M., and M. H. Ali. 2016. Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter. IET Renewable Power Generation 10 (2):150–57. doi:10.1049/iet-rpg.2015.0150.
  • Justo, J. J., and F. A. Mwasilu. 2019. Low voltage ride through enhancement for wind turbines equipped with DFIG under symmetrical grid faults. Tanzania Journal of Engineering and Technology 37:2.
  • Kartijkolaie, H. S., M. Radmehr, and M. Firouzi. 2018. LVRT capability enhancement of DFIG-based wind farms by using capacitive DC reactor-type fault current limiter. International Journal of Electrical Power & Energy Systems 102:287–95. doi:10.1016/j.ijepes.2018.04.031.
  • Naderi, S. B., M. Negnevitsky, A. Jalilian, M. T. Hagh, and K. M. Muttaqi. 2017. Low voltage ride-through enhancement of DFIG-based wind turbine using DC link switchable resistive type fault current limiter. International Journal of Electrical Power & Energy Systems 86:104–19. doi:10.1016/j.ijepes.2016.10.001.
  • Nehrir, M. H., C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh. 2011. A review of hybrid renewable/alternative energy systems for electric power generation: configurations, control, and applications. IEEE Transactions on Sustainable Energy 2 (4):392–403. doi:10.1109/TSTE.2011.2157540.
  • Orlando, N. A., M. Liserre, R. A. Mastromauro, and A. Dell Aquilla. 2013. A survey of control issues in PMSG-based small wind-turbine systems. IEEE Transactions on Industrial Informatics 9 (3):1211–21. doi:10.1109/TII.2013.2272888.
  • Pourmousavi, S. A., M. H. Nehrir, C. M. Colson, and C. Wang. 2010. Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization. IEEE Transactions on Sustainable Energy 1 (3):193–201. doi:10.1109/TSTE.2010.2061881.
  • Pulgar Painemal, H. A. Wind farm model for power system stability analysis (Doctoral dissertation, University of Illinois at Urbana-Champaign) 2011.
  • Rashid, G., and M. H. Ali. 2017. Fault ride through capability improvement of DFIG based wind farm by fuzzy logic controlled parallel resonance fault current limiter. Electric Power Systems Research 146:1–8. doi:10.1016/j.epsr.2017.01.018.
  • Sitharthan, R., C. K. Sundarabalan, K. R. Devabalaji, S. K. Nataraj, and M. Karthikeyan. 2018. Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer. Sustainable Cities and Society 39:114–25. doi:10.1016/j.scs.2018.02.008.
  • Soares, M. N., J. Gyselinck, L. G. B. Rolim, J. Helsen, and Y. Mollet. 2018. Loss minimisation strategy for DFIG in wind turbine considering iron losses. In 2018 IEEE International Conference on Industrial Technology (ICIT), 1025–1030 IEEE, Belgium.
  • Zhang, Y. 2013a. Synchrophasor measurement-based wind plant inertia estimation. In IEEE Green Technologies Conference, Colorado.
  • Zhang, Y. 2013b. Angle instability detection in power systems with high-wind penetration using synchrophasor measurements. IEEE Power Electronics 1 (4):306–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.