207
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Performance Assessment of Coal Fired Power Plant Integrated with Calcium Looping CO2 Capture Process

&
Pages 6096-6117 | Received 11 May 2019, Accepted 14 Jul 2019, Published online: 05 Oct 2019

References

  • Aneke, M., and M. Wang. 2015. Potential for improving the energy efficiency of cryogenic Air Separation Unit (ASU) using binary heat recovery cycles. Applied Thermal Engineering 81:223–31. doi:10.1016/j.applthermaleng.2015.02.034.
  • Antonio, C., G. Eduardo, and M. Gabriella. 2017. Effect of steam on the performance of ca-based sorbents in calcium looping processes. Powder Technology 316:578–84. doi:10.1016/j.jclepro.2016.04.123.
  • Babak, A., T. Maryam, E. S. Pedro, A. Perejon, and J.M. Valverde. 2019. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chemical Engineering Journal 358:679–90. doi:10.1016/j.cej.2018.10.061.
  • Blamey, J., M. Zhao, V. Manovic, E. J. Anthony, D. R. Dugwell, and P. S. Fennell. 2016. A shrinking core model for steam hydration of CaO-Based sorbents cycled for CO2 capture. Chemical Engineering Journal 291:298–305. doi:10.1016/j.cej.2016.01.086.
  • Charitos, A., N. Rodríguez, C. Hawthorne, M. Alonso, M. Zieba, B. Arias, G. Kopanakis, G. Scheffknecht, and J. C. Abanades. 2011. Experimental validation of the calcium looping CO2 capture process with two circulating fluidized bed carbonator reactors. Industrial & Engineering Chemistry Research 50:9685–95. doi:10.1021/ie200579f.
  • Daniel, H., and K. Juergen. 2016. The indirectly heated carbonate looping process for CO2 capture-A concept with heat pipe heat exchanger. Journal of Energy Resources Technology 138:042211. doi:10.1115/1.4033302.
  • Duan, L. Q., T. Feng, S. L. Jia, and X. Yu. 2016. Study on the performance of coal-fired power plant integrated with Ca-Looping CO2 capture system with recarbonation process. Energy 115:942–53. doi:10.1016/j.energy.2016.09.077.
  • Elena, D. M., B. Arias, G. Grasa, and J.C. Abanades. 2014. Design of a novel fluidized bed reactor to enhance sorbent performance in CO2 capture systems using CaO. Industrial & Engineering Chemistry Research 53:10059–71. doi:10.1021/ie500630p.
  • Grasa, G., I. Martínez, M. E. Diego, and J. C. Abanades. 2014. Determination of CaO carbonation kinetics under recarbonation conditions. Energy & Fuels : an American Chemical Society Journal 28:4033–42. doi:10.1021/ef500331t.
  • Jana, K., and S. De. 2016. Utilizing waste heat of the flue gas for post-combustion CO2 capture-A comparative study for different process layouts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38 (7):960–66. doi:10.1080/15567036.2013.843040.
  • Hilz, J., M. Helbig, M. Haaf, A. Daikeler, J. Ströhle, and B. Epple. 2017. Long-term pilot testing of the carbonate looping process in 1 MWth Scale. Fuel 210:892–99. doi:10.1016/j.fuel.2017.08.105.
  • June, B. P. 2016, Statistical review of world energy. www.bp.com/statisticalreview.
  • Lara, Y., P. Lisbona, A. Martínez, and L. M. Romeo. 2014. A systematic approach for high temperature looping cycles integration. Fuel 127:4–12. doi:10.1016/j.fuel.2013.09.062.
  • Lara, Y., A. Martínez, P. Lisbona, and L. M. Romeo. 2016. Heat integration of alternative Ca-looping configurations for CO2 capture. Energy 116:956–62. doi:10.1016/j.energy.2016.10.020.
  • Liu, X., J. N. Liang, D. Xiang, S. Yang, and Y. Qian. 2016. A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery. Journal of Cleaner Production 129:53–64. doi:10.1016/j.jclepro.2016.04.123.
  • Martínez, A., Y. Lara, P. Lisbona, and L. M. Romeo. 2014. Operation of a mixing seal valve in calcium looping for CO2 capture. Energy & Fuels : an American Chemical Society Journal 28:2059–68. doi:10.1021/ef402487e.
  • Martínez, I., B. Arias, G. S. Grasa, and J. C. Abanades. 2018. CO2 capture in existing power plants using second generation Ca-looping systems firing biomass in the calciner. Journal of Cleaner Production 187:638–49. doi:10.1016/j.jclepro.2018.03.189.
  • Martínez, I., R. Murillo, G. Grasa, and J. C. Abanades. 2011. Integration of a Ca-looping system for CO2 capture in an existing power plant. Energy Procedia 4:1699–706. doi:10.1016/j.egypro.2011.02.043.
  • Martíneza, I., G. Grasab, J. Parkkinenc, T. Tynjälä, T. Hyppänen, R. Murillo, and M. C. Romano. 2016. Review and research needs of Ca-looping systems modelling for post-combustion CO2 capture applications. International Journal of Greenhouse Gas Control 50:271–304. doi:10.1016/j.ijggc.2016.04.002.
  • Oh, S., S. Yun, and J. Kim. 2018. Process integration and design for maximizing energy efficiency of a coal-fired power plant integrated with amine-based CO2 capture process. Applied Energy 216:311–22. doi:10.1016/j.apenergy.2018.02.100.
  • Ortiz, C., R. Chacartegui, J. M. Valverde, and J. A. Becerra. 2016. A new integration model of the calcium looping technology into coal fired power plants for CO2 capture. Applied Energy 169:408–20. doi:10.1016/j.apenergy.2016.02.050.
  • Panupong, J., S. Wongsakulphasatch, A. Maneedaeng, C.K. Cheng, and S. Assabumrungrat. 2019. Surfactant assisted CaO-based sorbent synthesis and their application to high-temperature CO2 capture. Powder Technology 344:208–21. doi:10.1016/j.powtec.2018.12.011.
  • Perejon, A., L. M. Romeo, Y. Lara, P. Lisbona, A. Martínez, and J. M. Valverde. 2016. The calcium-looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy 162:787–807. doi:10.1016/j.apenergy.2015.10.121.
  • Rahmanzadeh, L., and M. Taghizadeh. 2019. Sorption-enhanced ethanol steam reforming on Ce-Ni/MCM-41 with simultaneous CO2 adsorption over Na- and Zr- promoted CaO based sorbent. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.04.289.
  • Rolfe, A., Y. Huang, M. Haaf, S. Rezvani, D. MclIveen-Wright, and N. J. Hewitt. 2018. Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation. Applied Energy 222:169–79. doi:10.1016/j.apenergy.2018.03.160.
  • Romeo, L. M., U. Sergio, V. Antonio, and J.M. Escosa. 2010. Exergy analysis as a tool for the integration of very complex energy systems: The case of carbonation/calcination CO2 systems in existing coal power plants. International Journal of Greenhouse Gas Control 4:647–54. doi:10.1016/j.ijggc.2009.12.012.
  • Spinelli, M., I. Martínez, E. Lena, G. Cinti, M. Hornberger, R. Spörl, J. C. Abanades, S. Becker, R. Mathai, K. Fleiger, et al. 2017. Integration of Ca-Looping systems for CO2 capture in cement plants. Energy Procedia 114:6206–14. doi:10.1016/j.egypro.2017.03.1758.
  • Stavroula, G., J. Brent, and S. Wayuta. 2019. Heat integration analysis and optimization for a post combustion CO2 capture retrofit study of SaskPower’s Shand Power Station. International Journal of Greenhouse Gas Control 84:62–71. doi:10.1016/j.ijggc.2019.02.018.
  • Sun, H., C. Wu, B. Shen, X. Zhang, Y. Zhang, and J. Huang. 2018. Progress in the development and application of CaO-based adsorbents for CO2 capture-a review. Materials Today Sustainability 1–2:1–27. doi:10.1016/j.mtsust.2018.08.001.
  • Vorrias, I., K. Atsonios, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, and E. Kakaras. 2013. Calcium looping for CO2 capture from a lignite fired power plant. Fuel 113:826–36. doi:10.1016/j.fuel.2012.12.087.
  • Wang, W., S. Ramjumar, and L. Fan. 2013. Energy penalty of CO2 capture for the Carbonation-Calcination Reaction (CCR) Process: Parametric effects and comparisons with alternative processes. Fuel 103:561–74. doi:10.1016/j.fuel.2012.04.043.
  • Wang, W., S. Ramkumar, D. Wong, and L.-S. Fan. 2012. Simulations and process analysis of the carbonation-calcination reaction process with intermediate hydration. Fuel 92:94–106. doi:10.1016/j.fuel.2011.06.059.
  • Ye, B., J. Jiang, Y. Zhou, J. Liu, and K. Wang. 2019. Technical and economic analysis of amine-based carbon capture and sequestration at coal-fired power plants. Journal of Cleaner Production 222:476–87. doi:10.1016/j.jclepro.2019.03.050.
  • Zhang, X. L., and Y. G. Liu. 2014. Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power. Applied Thermal Engineering 70:13–24. doi:10.1016/j.applthermaleng.2014.04.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.