325
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Techno-economic evaluation of an off-grid hybrid PV-wind-diesel-battery system with various scenarios of system’s renewable energy fraction

, & ORCID Icon
Pages 6162-6185 | Received 05 Jun 2019, Accepted 22 Sep 2019, Published online: 08 Oct 2019

References

  • Adaramol, M. S., S. S. Paul, and L. Oyewolac. 2014. Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy for Sustainable Development 19:72–82. doi:10.1016/j.esd.2013.12.007.
  • Ajlan, A., C. Tan, and A. Abdilahi. 2017. Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renewable and Sustainable Energy Reviews 75:559–70. doi:10.1016/j.rser.2016.11.024.
  • Al-Ghussain, L., A. Humayun, and F. Haneef. 2018. Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan. Sustainable Energy Technologies and Assessments 30:24–36. doi:10.1016/j.seta.2018.08.008.
  • Al-Soud, M. S., E. Abdallah, A. S. Akayleh, S. Abdallah, and E. Hrayshat. 2010. A parabolic solar cooker with automatic two axes sun tracking system. Applied Energy 78:463–70. doi:10.1016/j.apenergy.2009.08.035.
  • Al-Soud, M. S., and E. S. Hrayshat. 2004. Rural photovoltaic electrification program in Jordan. Renewable and Sustainable Energy Reviews 8:593–98. doi:10.1016/j.rser.2004.01.002.
  • Al-Soud, M. S., and E. S. Hrayshat. 2009a. A 50 MW concentrating solar power plant for Jordan. Journal of Cleaner Production 17:625–35. doi:10.1016/j.jclepro.2008.11.002.
  • Al-Soud, M. S., and E. S. Hrayshat. 2009b. Feasibility of wind energy for electrification of rural Jordanian sites. Clean Technologies and Environmental Policy 11:215–37. doi:10.1007/s10098-008-0194-z.
  • Ariyoa, B. O., M. F. AkoredeaI, O. A. Omeizaa, S. A. Y. Amudaab, and S. A. Oladejia. 2018. Optimization analysis of a stand-alone hybrid energy system for the senate building, university of Ilorin, Nigeria. Journal of Building Engineering 19:285–94. doi:10.1016/j.jobe.2018.05.015.
  • Ashourian, M. H., S. M. Cherati, A. A. Mohd Zin, N. Niknam, A. S. Mokhtar, and M. Anwari. 2013. Optimal green energy management for island resorts in Malaysia. Renewable Energy 51:36–45. doi:10.1016/j.renene.2012.08.056.
  • Bentouba, S., and M. Bourouis. 2016. Feasibility study of a wind–Photovoltaic hybrid power generation system for a remote area in the extreme south of Algeria. Applied Thermal Engineering 99:713–19. doi:10.1016/j.applthermaleng.2015.12.014.
  • Boussetta, M., R. El Bachtiri, M. Khanfara, and K. El Hammoumib. 2017. Assessing the potential of hybrid PV–Wind systems to cover public facilities loads under different Moroccan climate conditions. Sustainable Energy Technologies and Assessments 22:74–82. doi:10.1016/j.seta.2017.07.005.
  • Burton, T., D. Sharpe, N. Jenkins, and E. Bossanyi. 2001. Wind energy handbook. Chichester: Wiley and Sons.
  • CanDuman, A., and Ö. Güler. 2018. Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society 42:107–26. doi:10.1016/j.scs.2018.06.029.
  • Caterpillar Co. 2018. CAT 3516 diesel generator sets. Illinois, USA: Caterpillar.
  • Görkem, F., and Ü. Azapagic. 2018. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries. Science of the Total Environment 643:1579–89. doi:10.1016/j.scitotenv.2018.06.290.
  • Halabi, L. M., S. Mekhilef, L. Olatomiwa, and J. Hazelton. 2017. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Conversion and Management 144:322–39. doi:10.1016/j.enconman.2017.04.070.
  • Hepbasli, A. 2011. A comparative investigation of various greenhouse heating options using exergy analysis method. Applied Energy 88:4411–23. doi:10.1016/j.apenergy.2011.05.022.
  • Hitachi Chemical Co. 2018. Batteries for renewable energy applications. Tokyo, Japan: Hitachi.
  • Hrayshat, E. 2007a. A wind-powered system for water desalination. International Journal of Green Energy 4:471–81. doi:10.1080/15435070701583060.
  • Hrayshat, E. 2008a. Oil shale – An alternative energy source for Jordan. Energy Sources - Part A 30:1915–20. doi:10.1080/15567030701468175.
  • Hrayshat, E. S. 2002. Wind energy in Jordan: Current status and future potential. Proceeding of World Renewable Energy Congress-VII. Cologne, Germany.
  • Hrayshat, E. S. 2005. Wind availability and its potential for electricity generation in Tafila/Jordan. Renewable and Sustainable Energy Reviews 9:111–17. doi:10.1016/j.rser.2004.01.011.
  • Hrayshat, E. S. 2007b. Wind resource assessment of the Jordanian southern region. Renewable Energy 32:1948–60. doi:10.1016/j.renene.2006.11.008.
  • Hrayshat, E. S. 2008b. Brackish water desalination by a stand alone reverse osmosis desalination unit powered by photovoltaic solar energy. Renewable Energy 33:1784–90. doi:10.1016/j.renene.2007.11.001.
  • Hrayshat, E. S. 2008c. Analysis of renewable energy situation in Jordan. Energy Sources - Part B 3:89–102. doi:10.1080/15567240600815000.
  • Hrayshat, E. S. 2009a. Prospects of hydro power utilization for electricity generation in Jordan. Energy Sources - Part B 4:77–83. doi:10.1080/15567240701423977.
  • Hrayshat, E. S. 2009b. Status and outlook of geothermal energy in Jordan. Energy for Sustainable Development 13:124–28. doi:10.1016/j.esd.2009.05.004.
  • Hrayshat, E. S. 2009c. Techno-economic analysis of autonomous hybrid photovoltaic-diesel-battery system. Energy for Sustainable Development 13:143–50. doi:10.1016/j.esd.2009.07.003.
  • Hrayshat, E. S. 2009d. Techno-economic analysis of electricity generation by means of a proposed 50 MW grid-connected wind power plant for Jordan. Energy Sources - Part B 4:247–60. doi:10.1080/15567240802534235.
  • Hrayshat, E. S. 2009e. Off-grid hybrid wind-diesel power plant for application in remote Jordanian settlements. Clean Technologies and Environmental Policy 11:425–36. doi:10.1007/s10098-009-0200-0.
  • Hrayshat, E. S. 2009f. Viability of solar photovoltaics as an electricity generation source for Jordan. Renewable Energy 34:2133–40. doi:10.1016/j.renene.2009.03.006.
  • Hrayshat, E. S., and A. E. Al-Rawajfeh. 2008. A solar multiple effect distiller for Jordan. Desalination 200:558–65. doi:10.1016/j.desal.2007.01.056.
  • Hrayshat, E. S., and M. S. Al-Soud. 2004a. Solar energy in Jordan: Current state and prospects. Renewable and Sustainable Energy Reviews 8:193–200. doi:10.1016/j.rser.2003.10.005.
  • Hrayshat, E. S., and M. S. Al-Soud. 2004b. Potentials of solar energy development for water pumping in Jordan. Renewable Energy 29:1393–99. doi:10.1016/j.renene.2003.12.016.
  • Hunter, R., and G. Elliot. 2014. Wind-diesel systems: A guide to the technology and its implementation. Cambridge: Cambridge University Press.
  • International Energy Agency. 2018a. Electricity information: Overview. Paris: IEA.
  • International Energy Agency. 2018b. Renewables information: Overview. Paris: IEA.
  • International Energy Agency. 2018c. CO2 emissions from fuel combustion: Overview. Paris: IEA.
  • International Energy Agency. 2018d. World energy outlook 2017: A world in transformation. Paris: IEA.
  • JoPetrol. 2017. Annual report. Amman: JoPetrol press.
  • Jordanian department of statistics. 2017. Annual report. Amman: DOS.
  • Jordanian Ministry of Energy and Mineral Resources. 2017. Annual report. Amman: MEMR press.
  • Khan, M., and M. Iqbal. 2005. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy 30:835–54. doi:10.1016/j.renene.2004.09.001.
  • Khatib, T., A. Mohamed, K. Sopian, and M. Mahmoud. 2011. Optimal sizing of building integrated hybrid PV-diesel generator system for zero load rejection for Malaysia. Energy and Buildings 43:3430–35. doi:10.1016/j.enbuild.2011.09.008.
  • Komendantova, N., J. Irshaid, L. Marashdeh, A. Al-Salaymeh, L. Ekenberg, and J. Linnerooth-Bayer. 2017. Country fact sheet Jordan: Energy and development at a glance. Zurich: ETH.
  • Lau, K. Y., M. F. Yousof, S. N. Arshad, M. Anwari, and A. H. Yatim. 2010. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 35:3245–55. doi:10.1016/j.energy.2010.04.008.
  • LeadSolar Energy Co. 2018. Converter for renewable energy systems. Dallas, USA: LeadSolar.
  • Makbul, A., M. Ramlia, A. Hiendro, and Y. Al-Turkiac. 2016. Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia. Renewable Energy 91:374–85. doi:10.1016/j.renene.2016.01.071.
  • Mamaghani, A. H., B. Najafi, A. Shirazi, and F. Rinaldi. 2015. 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system. Energy 82:650–63. doi:10.1016/j.energy.2015.01.074.
  • Markvart, T., and L. Castaner. 2003. Practical handbook of photovoltaics: Fundamentals and applications. Oxford: Elsevier Ltd.
  • Masters, G. M. 2004. Renewable and efficient electric power systems. New York, NY: Wiley-IEEE Press.
  • Mohandes, M., S. Rehman, and S. Rahman. 2011. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Applied Energy 88:4024–32. doi:10.1016/j.apenergy.2011.04.015.
  • National electric power Co. 2017. Annual report. Amman: Al-Bandar press.
  • Neubauer, J. 2014. Battery Lifetime Analysis and Simulation Tool (BLAST). Colorado: NREL.
  • Noguera, A., N. Luis, S. Mendoza, C. Electo, E. Silva, L. Vladimir, and R. Melian Cobas. 2018. Optimum design of a hybrid diesel-ORC/photovoltaic system using PSO: Case study for the city of Cujubim, Brazil. Energy 142:33–45. doi:10.1016/j.energy.2017.10.012.
  • Peerapong, P., and B. Limmeechokchai. 2017. Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand. Energy Reports 3:1–13. doi:10.1016/j.egyr.2016.11.001.
  • Rehman, S., I. El-Amin, F. Ahmad, S. Shaahid, A. Al-Shehri, J. Bakhashwain, and A. Shash. 2017. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renewable and Sustainable Energy Reviews 11:635–53. doi:10.1016/j.rser.2005.05.003.
  • Rehman, S., ., M. Mahbub Alam, J. Meyer, and L. Al-Hadhrami. 2012. Feasibility study of a wind–PV–Diesel hybrid power system for a village. Renewable Energy 38:258–68. doi:10.1016/j.renene.2011.06.028.
  • Shirazi, A., R. Taylor, S. White, and G. Morrison. 2016. Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental assessment. Renewable Energy 86:955–71. doi:10.1016/j.renene.2015.09.014.
  • Singh, G., P. Baredara, A. Singh, and D. Kurupb. 2017. Optimal sizing and location of PV, wind and battery storage for electrification to an island: A case study of Kavaratti, Lakshadweep. Journal of Energy Storage 12:78–86. doi:10.1016/j.est.2017.04.003.
  • SUNTECH Co. 2018. STP345S monocrystalline solar cells: Manual. Wuxi, China: Suntech.
  • Tsuanyo, D., Y. Azoumah, D. Aussel, and P. Neveu. 2015. Modeling and optimization of batteryless hybrid PV (photovoltaic)/diesel systems for off-grid applications. Energy 86:152–63. doi:10.1016/j.energy.2015.03.128.
  • Wind Energy Solutions Co. 2018. WES250: Bringing renewable energy everywhere. Opmeer, The Netherlands: WES.
  • World bank. 2017. Data catalog. Washington, USA: World bank.
  • Yamegueu, D., Y. Azoumah, X. Py, and N. Zongo. 2011. Experimental study of electricity generation by solar PV-diesel hybrid systems without battery storage for off-grid areas. Renewable Energy 36:1780–87. doi:10.1016/j.renene.2010.11.011.
  • Yilmaz, S., and F. Dincer. 2017. Optimal design of hybrid PV-diesel-battery systems for isolated lands: A case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews 77:344–52. doi:10.1016/j.rser.2017.04.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.