445
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Supercritical CO2 fracturing with different drilling depths in shale

, ORCID Icon, , , ORCID Icon, , , , & show all
Pages 10603-10622 | Received 21 Mar 2019, Accepted 13 Jul 2019, Published online: 10 Oct 2019

References

  • Cao, P., J. S. Liu, and Y. K. Leong. 2016. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas extraction. Fuel 178:103–17. doi:10.1016/j.fuel.2016.03.055.
  • Chen, G. Q., Y. Zhang, R. Q. Huang, et al. 2015. Failure mechanism of rock bridge based on acoustic emission technique. Journal of Sensors
  • Cheng, Y. G. Li H. Wang, et al. 2013. Pressure boost mechanism within cavity of the supercritical CO2 jet fracturing. Acta Petrolei Sinica 34 (3):550–55.
  • Cheng, Y., G. Li, H. Wang, et al. 2014. Phase control of wellbore fluid during supercritical CO2 jet fracturing. Acta Petrolei Sinica 35 (6):1182–87.
  • Du, Y., R. Wang, H. Ni, et al. 2011. The research and development of supercritical carbon dioxide wellbore flow characteristics analysis system. Electronic Journal of Geotechnical Engineering 16:1581–92.
  • Fang, C., W. Chen, and M. Amro. 2014. Simulation study of hydraulic fracturing using super critical CO2 in Shale. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE.
  • Ge, Z. L., X. D. Mei, Y. Y. Lu, J. Tang, and B. Xia. 2015. Optimization and application of sealing material and sealing length for hydraulic fracturing borehole in underground coal mines. Arabian Journal of Geosciences 8 (6):3477–90. doi:10.1007/s12517-014-1488-6.
  • Guo, J., and J. Zeng. 2015. A coupling model for wellbore transient temperature and pressure of fracturing with supercritical carbon dioxide. Acta Petrolei Sinica 36 (2):203–09.
  • Inui, S., T. Ishida, Y. Nagaya, Y. Nara, Y. Chen, Q. Chen. 2014. AE monitoring of hydraulic fracturing experiments in granite blocks using supercritical CO2, water and viscous oil.48th U.S. Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota.
  • Ishida, T., K. Aoyagi, T. Niwa, Y. Chen, S. Murata, Q. Chen, and Y. Nakayama. 2012. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2. Geophysical Research Letters 39:n/a-n/a. doi:10.1029/2012GL052788.
  • Jiang, D., J. Chen, S. Ren, X. Yuan, C. Yang. 2013. A damage constitutive model of rock salt based on acoustic emission characteristics. Clean Energy Systems in the Subsurface: Production, Storage and Conversion, Springer Berlin Heidelberg. Goslar, Germany. 363–77.
  • Jiang, Y. D., Y. H. Luo, Y. Y. Lu, C. Qin, and H. Liu. 2016. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. Energy 97:173–81. doi:10.1016/j.energy.2015.12.124.
  • Kachanov, L. M. 1958. Time of the rupture process under creep conditions. Izv Akad Nauk S S R Otd Tech Nauk 8:26–31.
  • Kachanov, L. M. 1999. Rupture time under creep conditions. International Journal of Fracture 97 (1):11–18. doi:10.1023/A:1018671022008.
  • Kubala, G., and B. A. Mackay. 2010. Use of carbon-dioxide-based fracturing fluids. US Patent.
  • Labuz, J. F., and A. Zang. 2012. Mohr–Coulomb failure criterion. Rock Mechanics & Rock Engineering 45 (6):975–79. doi:10.1007/s00603-012-0281-7.
  • Li, Y., S. G. Cao, N. Fantuzzi, and Y. Liu. 2015a. Elasto-plastic analysis of a circular borehole in elastic-strain softening coal seams. International Journal of Rock Mechanics and Mining Sciences 80:316–24. doi:10.1016/j.ijrmms.2015.10.002.
  • Li, Y., Y. Li, B. Wang, Z. Chen, and D. Nie. 2016. The status quo review and suggested policies for shale gas development in China. Renewable & Sustainable Energy Reviews 59:420–28. doi:10.1016/j.rser.2015.12.351.
  • Li, Y. J., X. Y. Li, Y. L. Wang, and Y. Qingchun. 2015b. Effects of composition and pore structure on the reservoir gas capacity of carboniferous shale from Qaidam Basin, China. Marine and Petroleum Geology 62:44–57. doi:10.1016/j.marpetgeo.2015.01.011.
  • Liteanu, E., and C. J. Spiers. 2011. Fracture healing and transport properties of wellbore cement in the presence of supercritical CO2. Chemical Geology,281 (3–4):195–210.
  • Liu, H., F. Wang, J. Zhang, S. Meng, and Y. Duan. 2014. Fracturing with carbon dioxide: Application status and development trend. Petroleum Exploration and Development 41 (4):513–19. doi:10.1016/S1876-3804(14)60060-4.
  • Lu, Y. Y., F. Yang, Z. L. Ge, S. Wang, and Q. Wang. 2015. The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams. Journal of Natural Gas Science and Engineering 27:1649–56. doi:10.1016/j.jngse.2015.10.031.
  • Middleton, R., H. Viswanathan, R. Currier, and R. Gupta. 2014. CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration. Energy Procedia 63:7780–84. doi:10.1016/j.egypro.2014.11.812.
  • Middleton, R. S., J. W. Carey, R. P. Currier, J. D. Hyman, Q. Kang, S. Karra, J. Jiménez-Martínez, M. L. Porter, and H. S. Viswanathan. 2015. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy 147:500–09. doi:10.1016/j.apenergy.2015.03.023.
  • Qin, C., Y. Jiang, Y. Luo, X. Xian, H. Liu, and Y. Li. 2017. Effect of supercritical carbon dioxide treatment time, pressure, and temperature on shale water wettability. Energy & Fuels 31 (1):493–503. doi:10.1021/acs.energyfuels.6b03257.
  • Span, R., and W. Wagner. 1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25 (6):1509–96. doi:10.1063/1.555991.
  • Stephenson, M. H. 2016. Shale gas in North America and Europe. Energy Science & Engineering 4 (1):4–13. doi:10.1002/ese3.96.
  • Sun, M., B. Yu, Q. Hu, Y. Zhang, B. Li, R. Yang, Y. B. Melnichenko, and G. Cheng. 2017. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm. International Journal of Coal Geology 171:61–68. doi:10.1016/j.coal.2016.12.004.
  • Tan, J., P. Weniger, B. Krooss, A. Merkel, B. Horsfield, J. Zhang, C. J. Boreham, G. V. Graas, and B. A. Tocher. 2014. Shale gas potential of the major marine shale formations in the upper yangtze platform, South China, Part II: Methane sorption capacity. Fuel 129 (4):204–18. doi:10.1016/j.fuel.2014.03.064.
  • Uetsuji, Y., and M. Zako. 1998. On evaluation procedure to AE test for fiber reinforced composite materials based on damage mechanics. Transactions of the Japan Society of Mechanical Engineers 64 (628):2938–44. doi:10.1299/kikaia.64.2938.
  • Wang, H., G. Li, and Z. Shen. 2012. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide. Energy Sources Part A Recovery Utilization & Environmental Effects 34 (15):1426–35. doi:10.1080/15567036.2010.529570.
  • Wang, Q., and R. R. Li. 2016. Natural gas from shale formation: A research profile. Renewable & Sustainable Energy Reviews 57:1–6. doi:10.1016/j.rser.2015.12.093.
  • Xidong, D., G. Min, L. Zhenjian, Y. Zhao, F. Sun, and T. Wu. 2019. Enhanced shale gas recovery by the injections of CO2, N2, and CO2/N2 mixture gases. Energy & Fuels 33 (6):5091–101. doi:10.1021/acs.energyfuels.9b00822.
  • Xu, C. Y., Y. L. Kang, Z. J. You, and M. Chen. 2016. Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. Journal of Natural Gas Science and Engineering 36 (B):1208–19. doi:10.1016/j.jngse.2016.03.096.
  • Yang, G., Y. Li, M. Xin, J. Dong. 2014. Effect of Chlorite on CO2-water-rock interaction. Earth Science 39 (4):462–72.
  • Yang, J. H., F. W. Wang, and S. Y. Qin. 2000. Experimental and theoretical study on AE characteristic and damage model of HTPB composite solid propellant. Journal of Solid Rocket Technology. 23 (3):37–40.
  • Yap, N. T. 2016. Unconventional shale gas development: Challenges for environmental policy and EA practice. Impact Assessment and Project Appraisal 34 (2):97–109. doi:10.1080/14615517.2016.1176405.
  • Yin, N. 2014. Analysis on surrounding rock mass plastic zone of deep underground chamber based on Hoek-Brown Criterion. Advanced Materials Research 838–841:741–46. doi:10.4028/.scientific.net/AMR.838-841.741.
  • Yuan, J. H., D. K. Luo, and L. Y. Feng. 2015. A review of the technical and economic evaluation techniques for shale gas development. Applied Energy 148:49–65. doi:10.1016/j.apenergy.2015.03.040.
  • Zhang, X., Y. Lu, J. Tang, Z. Zhou, Y. Liao. 2016. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel190 (15):370–378.
  • Zhang, X. T., X. Jiang, J. Y. Yang, and M. Chen. 2015. A newly developed rate analysis method for a single shale gas well. Energy Exploration & Exploitation 33 (3):309–16. doi:10.1260/0144-5987.33.3.309.
  • Zhang, Y. X., P. F. Wang, J. Yang, and G. Q. Li. 2013. Study on supercritical carbon dioxide fracturing coalbed gas method. Advanced Materials Research 807–809:2529–33. doi:10.4028/.scientific.net/AMR.807-809.
  • Zhao, J. Z., C. Y. Liu, H. Yang, and Y. Li. 2015. Strategic questions about China’s shale gas development. Environmental Earth Sciences 73 (10):6059–68. doi:10.1007/s12665-015-4092-5.
  • Zhao, Y., S. Cao, Y. Li, L. Qin. 2015. The analysis of antireflection range in coal seam hydraulic fracturing. Journal of Mining and Safety Engineering 32 (4):644–50.
  • Zhao, Y., S. Cao, Y. Li, H. Yang, P. Guo, G. Liu, and R. Pan. 2018a. Experimental and numerical investigation on the effect of moisture on coal permeability. Natural Hazards 90 (3):1201–21. doi:10.1007/s11069-017-3095-9.
  • Zhao, Y., S. Cao, Y. Li, Z. Zhang, P. Guo, H. Yang, S. Zhang, and R. Pan. 2018b. The occurrence state of moisture in coal and its influence model on pore seepage. RSC Advances 8 (10):5420–32. doi:10.1039/C7RA09346B.
  • Zhao, Y., S. Cao, D. Shang, H. Yang, Y. Yu, Y. Li, J. Liu, H. Wang, R. Pan, H. Yang, et al. 2019. Crack propagation and crack direction changes during the hydraulic fracturing of coalbed. Computers and Geotechnics 111:229–42. doi:10.1016/j.compgeo.2019.03.018.
  • Zhou, J. P., G. J. Liu, Y. D. Jiang, X. Xian, Q. Liu, D. Zhang, and J. Tan. 2016. Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale: An experimental study. Journal of Natural Gas Science and Engineering 36:369–77. doi:10.1016/j.jngse.2016.10.005.
  • Zhu, L. H., J. H. Yuan, and D. K. Luo. 2016. A new approach to estimating surface facility costs for shale gas development. Journal of Natural Gas Science and Engineering 36:202–12. doi:10.1016/j.jngse.2016.10.013.
  • Zou, C. N., D. Z. Dong, Y. M. Wang, X. Li, J. Huang, S. Wang, Q. Guan, C. Zhang, H. Wang, H. Liu, et al. 2015. Shale gas in China: Characteristics, challenges and prospects (I). Petroleum Exploration and Development 42 (6):753–67. doi:10.1016/S1876-3804(15)30072-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.