190
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Optimization of biomass and fatty acid productivity of Desmodesmus intermedius as a promising microalga for biodiesel production

ORCID Icon, , ORCID Icon, &
Pages 6213-6226 | Received 05 May 2019, Accepted 13 Jul 2019, Published online: 05 Oct 2019

References

  • Abdel-Fattah, Y. R., H. M. Saeed, Y. M. Gohar, and M. A. El-Baz. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochemistry 40:1707–14. doi:10.1016/j.procbio.2004.06.048.
  • Abomohra, A., H. Eladel, M. El-Esawi, S. Wang, Q. Wang, Z. He, Y. Feng, H. Shang, and D. Hanelt. 2018. Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource Technology 249:992–99. doi:10.1016/j.biortech.2017.10.102.
  • Abomohra, A., H. Shang, M. El-Sheekh, H. Eladel, R. Ebaid, S. Wang, and Q. Wang. 2019. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. Bioresource Technology 288:121514. doi:10.1016/j.biortech.2019.121526.
  • Abomohra, A., M. El-Sheekh, and D. Hanelt. 2017. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renewable Energy 101:1266–72. doi:10.1016/j.renene.2016.10.015.
  • Abomohra, A., W. Jin, and M. El-Sheekh. 2016b. Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Conversion and Management 108:23–29. doi:10.1016/j.enconman.2015.11.007.
  • Abomohra, A., W. Jin, R. Tu, S. F. Han, M. Eid, and H. Eladel. 2016a. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews 64:596–606. doi:10.1016/j.rser.2016.06.056.
  • Abomohra, A. E. F., M. Wagner, M. El-Sheekh, and D. Hanelt. 2013. Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: Screening studies towards biodiesel production. Journal of Applied Phycology 25:931–36. doi:10.1007/s10811-012-9917-y.
  • Ahmed, A. M., A. F. Radi, M. D. Heikal, and R. Abdel-Basset. 1989. Effect of Na-Ca combinations on photosynthesis and some related processes of Chlorella vulgaris. J Plant Physiol 135:175–178.
  • Anand, J., and M. Arumugam. 2015. Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology 188:190–94. doi:10.1016/j.biortech.2014.12.097.
  • Antolın, G., F. V. Tinaut, Y. Briceno, V. Castano, C. Perez, and A. I. Ramırez. 2002. Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83:111–14. doi:10.1016/S0960-8524(01)00200-0.
  • Ashour, M., M. E. Elshobary, R. El-Shenody, A. W. Kamil, and A. E. Abomohra. 2019. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass & Bioenergy 120:439–47. doi:10.1016/j.biombioe.2018.12.009.
  • Battah, M., Y. El-Ayoty, A. E. F. Abomohra, S. A. El-Ghany, and A. Esmael. 2013. Optimization of growth and lipid production of the chlorophyte microalga Chlorella vulgaris as a feedstock for biodiesel production. World Applied Sciences Journal 28 (11):1536–1543.
  • Breuer, G., P. P. Lamers, D. E. Martens, R. B. Draaisma, and R. H. Wijffels. 2013. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology 143:1–9. doi:10.1016/j.biortech.2013.05.105.
  • Chen, G. Q., Y. Jiang, and F. Chen. 2008. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chemistry 109:88–94. doi:10.1016/j.foodchem.2007.12.022.
  • Chinnasamy, S., A. Bhatnagar, R. W. Hunt, and K. C. Das. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology 101 (9):3097–105. doi:10.1016/j.biortech.2009.12.026.
  • Chlebowicz, W. W. 1988. Animal adaptation to the changes of salinity and ionic content in water. In Oceanobiology, ed. M. E. Vinogradova, 1. Warszawa: PW N. in Polish, Warsaw, Poland.
  • Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93. doi:10.1038/nature04056.
  • Danesh, A., P. Mooij, S. Ebrahimi, R. Kleerebezem, and M. van Loosdrecht. 2018. Effective role of medium supplementation in microalgal lipid accumulation. Biotechnology and Bioengineering 115:1152–60. doi:10.1002/bit.26548.
  • Diaz, G. C., Y. R. Cruz, M. M. Fortes, C. V. Viegas, R. G. Carliz, N. C. Furtado, and D. A. G. Aranda. 2014. Primary separation of antioxidants (unsaponifiables) the wet biomass microalgae Chlamydomonas sp and production of the biodiesel. Natural Science 6:1210–18. doi:10.4236/ns.2014.615108.
  • Eladel, H., A. Abomohra, M. Battah, S. Mohmmed, A. Radwan, and H. Abdelrahim. 2018. Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess and Biosystems Engineering 42:425–33. doi:10.1007/s00449-018-2046-5.
  • Eladel, H., A. F. Abomohra, M. Battah, S. Mohmmed, and A Radwan. 2019. Evaluation of Chlorella Sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess and Biosystems Engineering 42 (3):425–433.
  • El-Sheekh, M., A. E. F. Abomohra, and D. Hanelt. 2013. Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World Journal of Microbiology and Biotechnology 29:915–22. doi:10.1007/s11274-012-1248-2.
  • El-Sheekh, M., A. E. F. Abomohra, H. Eladel, M. Battah, and S. Mohammed. 2018. Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production. Renewable Energy 129:114–20. doi:10.1016/j.renene.2018.05.099.
  • El-Sheekh, M. M., A. Abomohra, M. Abd El-Azim, and R. Abou-Shanab. 2017. Effect of temperature on growth and fatty acids profile of the biodiesel promising microalga Scenedesmus acutus. Biotechnology, Agronomy, Society and Environment 21:233–39.
  • El-Sheekh, M. M., H. M. Khairy, S. Gheda, and R. Elshenoudy. 2016. Application of Plackett-Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculate. The Egyptian Journal of Aquatic Research 42:57–64. doi:10.1016/j.ejar.2015.10.001.
  • Esakkimuthu, S., V. Krishnamurthy, S. Wang, A. E. Abomohra, S. Shanmugam, S. G. Ramakrishnan, S. Subrmaniam, and K. Swaminathan. 2019. Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation. Renewable Energy 140:807–15. doi:10.1016/j.renene.2019.03.104.
  • Fang, J. Y., H. Chiu, J. T. Wu, Y. R. Chiang, and S. H. Hus. 2004. Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin. International Journal of Pharmaceutics 276:163–17. doi:10.1016/j.ijpharm.2004.02.026.
  • Fatma, T., M. A. Khan, and M. Choudhary. 2007. Impact of environmental pollution on cyanobacterial proline content. Journal of Applied Phycology 19:625–29. doi:10.1007/s10811-007-9195-2.
  • Felizardo, P., M. Correia, I. Raposo, J. Mendes, R. Berkemeier, and J. Bordado. 2006. Production of biodiesel from waste frying oil. Waste Management 26:487–94. doi:10.1016/j.wasman.2005.02.025.
  • Ferreira, G. F., L. R. Pinto, R. Maciel Filho, and L. V. Fregolente. 2019. A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews 109:448–66. doi:10.1016/j.rser.2019.04.052.
  • Filomena, M., D. J. Raposo, R. Manuel, and S. Costa. 2013. Influence of the growth regulators Kinetin and 2, 4-D on the growth of two Chlorophyte Microalgae, Haematococcus pluvialis and Dunaliella salina. Basic and Applied Sciences 9:302–08.
  • Folch, J., M. Lees, and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226:497–509.
  • Georgianna, D. R., and S. P. Mayfield. 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–35. doi:10.1038/nature11479.
  • Gunstone, F. D., and R. J. Hamilton. 2001. Oleochemical manufacture and applications, Vol. 4. USA: CRC Press.
  • Guo, X., G. Su, Z. Li, J. Chang, X. Zeng, Y. Sun, and L. Lin. 2015. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp. Bioresource Technology 191:385–90. doi:10.1016/j.biortech.2015.04.014.
  • Han, S., W. Jin, Y. Chen, R. Tu, and A. F. Abomohra. 2016. Enhancement of lipid production of Chlorella pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Applied Biochemistry and Biotechnology 180 (6):1043–55. doi:10.1007/s12010-016-2151-3.
  • Islam, M. A., M. Magnusson, R. J. Brown, A. G. Ayoko, N. M. Nabi, and K. Heimann. 2013. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6:5676–702. doi:10.3390/en6115676.
  • Jin, Q., L. Chen, A. M. Li, F. Q. Liu, C. Long, A. D. Shan, and A. G. L. Borthwick. 2015. Comparison between solar utilization of a closed microalgae-based bio-loop and that of a stand-alone photovoltaic system. Bioresource Technology 184:108–15. doi:10.1016/j.biortech.2014.10.131.
  • Kiran, B., K. Pathak, R. Kumar, D. Deshmukh, and N. Rani. 2016. Influence of varying nitrogen levels on lipid accumulation in Chlorella sp. International Journal of Environmental Science and Technology 13:1823–32. doi:10.1007/s13762-016-1021-4.
  • Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86:1059–70. doi:10.1016/j.fuproc.2004.11.002.
  • Kwak, H. S., K. J YH, H. M. Woo, E. Jin, B. K. Min, and S. J. Sim. 2016. Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Research 19:215–24. doi:10.1016/j.algal.2016.09.003.
  • Li, Y., J. Huang, G. Sandmann, and F. Chen. 2009. high‐light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in chlorella zofingiensis (chlorophyceae) 1. Journal of Phycology 45:635–41. doi:10.1111/j.1529-8817.2009.00689.x.
  • Liu, Y., Y. Xu, Y. P. Yu, R. Yu, P. Li, D. Qiao, and Y. Cao. 2014. The biodiversity of oleaginous microalgae in Northern Qinghai-Tibet Plateau. African Journal of Microbiology Research 8:66–74. doi:10.5897/AJMR12.806.
  • Ma, X., J. Liu, B. Liu, T. Chen, B. Yang, and F. Chen. 2016. Physiological and biochemical changes reveal stress-associated photosynthetic carbon partitioning into triacylglycerol in the oleaginous marine alga Nannochloropsis oculata. Algal Research 16:28–35. doi:10.1016/j.algal.2016.03.005.
  • Magalhães, A. M., E. Pereira, A. J. Meirelles, K. A. Sampaio, and G. J. Maximo. 2019. Proposing blends for improving the cold flow properties of ethylic biodiesel. Fuel 253:50–59. doi:10.1016/j.fuel.2019.04.129.
  • Mandotra, S. K., P. Kumar, M. R. Suseela, and P. W. Ramteke. 2014. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresource Technology 156:42–47. doi:10.1016/j.biortech.2013.12.127.
  • Oren, A. 1999. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63:334–40.
  • Palacios, O. A., Y. Bashan, and L. E. de-Bashan. 2014. Proven and potential involvement of vitamins in interactions of plants with plant growthpromoting bacteria-An overview. Biology and Fertility of Soils 50:415–32. doi:10.1007/s00374-013-0894-3.
  • Park, W., G. Yoo, M. Moon, C. Kim, Y. Choi, and J. Yang. 2013. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Applied Biochemistry and Biotechnology 171:1128–42. doi:10.1007/s12010-013-0386-9.
  • Plackett, R. L., and J. P. Burman. 1946. The design of optimum multi-factorial experiments. Biometrika 33:305–25. doi:10.1093/biomet/33.4.305.
  • Pribyl, P., M. Elias, V. Cepak, J. Lukavsky, and P. Kastanek. 2012. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of trachydiscus minutus (eustigmatophyceae, heterokontophyta) 1. Journal of Phycology 48:231–42. doi:10.1111/j.1529-8817.2011.01109.x.
  • Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–15. doi:10.1016/j.biochi.2004.09.017.
  • Rinna, F., S. Buono, I. T. D. Cabanelas, I. A. Nascimento, G. Sansone, and C. A. Barone. 2017. Wastewater treatment by microalgae can generate high quality biodiesel feedstock. Journal of Water Process Engineering 18:144–49. doi:10.1016/j.jwpe.2017.06.006.
  • Sforza, E., B. Grisa, C. E. de Farias Silvaa, T. Morosinotto, and A. Bertuccoa. 2014. Effects of light on cultivation of Scenedesmus obliquus in batch and continuous flat plate photobioreactor. Chemical Engineering Transactions 38:211–16. doi:10.3303/CET1438036.
  • Singh, B., A. Guldhe, I. Rawat, and F. Bux. 2014. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews 29:216–45. doi:10.1016/j.rser.2013.08.067.
  • Singh, Y., A. Singla, A. Upadhyay, and A. K. Singh. 2017. Sustainability of moringa-oil-based biodiesel blended lubricant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39:313–19. doi:10.1080/15567036.2016.1179360.
  • Smith, A. G., M. T. Croft, M. Moulin, and M. E. Webb. 2007. Plants need their vitamins too. Current Opinion in Plant Biology 10:266–75. doi:10.1016/j.pbi.2007.04.009.
  • Stein, J. 1980. Culture methods and growth measurements. Handbook of Phycological methods (p. 448). Cambridge, UK.Cambridge University Press.
  • Tarakhovskaya, E. R., Y. I. Maslov, and M. F. Shishova. 2007. Phytohormones in algae. Russian Journal of Plant Physiology 54:163–70. doi:10.1134/S1021443707020021.
  • Wang, S., M. Yerkebulan, A. E. F. Abomohra, S. El-Khodary, and Q. Wang. 2019. Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology 286:121371. doi:10.1016/j.biortech.2019.121371.
  • Xin, L., H. Hong-Ying, and Y. Jia. 2010. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology 27 (1):59–63. doi:10.1016/j.nbt.2009.11.006.
  • Yeesang, C., and B. Cheirsilp. 2011. Effect of nitrogen salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology 102 (3):3034–3040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.