335
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effect of lignite semi-coke on lignite microwave upgrade and its slurryability

, , , &
Pages 6442-6455 | Received 10 Apr 2019, Accepted 12 Jul 2019, Published online: 08 Oct 2019

References

  • Abdelsayed, V., D. Shekhawat, M. W. Smith, D. Linka, and A. E. Stiegman. 2018. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis. Fuel 217:656–67. doi:10.1016/j.fuel.2017.12.099.
  • Cheng, J., F. Zhou, X. Wang, J. Liu, Z. Wang, J. Zhou, and K. Cen. 2016. Optimization of microwave dewatering of an Indonesian lignite. Fuel Processing Technology 144:71–78. doi:10.1016/j.fuproc.2015.12.015.
  • Cheng, J., J. Zhou, Y. Li, J. Liu, and K. Cen. 2008. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat. Energy & Fuels : an American Chemical Society Journal 22 (4):2422–28. doi:10.1021/ef7005244.
  • Fan, W., C. Jia, W. Hu, C. Yang, L. Liu, X. Zhang, T. Chang, and H. Cui. 2015. Dielectric properties of coals in the low-terahertz frequency region. Fuel 162:294–304. doi:10.1016/j.fuel.2015.09.027.
  • Fang, Z., C. Li, J. Sun, H. Zhang, and J. Zhang. 2007. The electromagnetic characteristics of carbon foams. Carbon 45 (15):2873–79. doi:10.1016/j.carbon.2007.10.013.
  • Feng, P., L. Hao, C. Huo, Z. Wang, W. Lin, and W. Song. 2014. Rheological behavior of coal bio-oil slurries. Energy 66:744–49. doi:10.1016/j.energy.2014.01.097.
  • Francioso, O., S. Sanchez-Cortes, S. Bonora, M. Roldán, and G. Certini. 2011. Structural characterization of charcoal size-fractions from a burnt Pinus pinea forest by FT-IR, Raman and surface-enhanced Raman spectroscopies. Journal of Molecular Structure 994 (1–3):155–62. doi:10.1016/j.molstruc.2011.03.011.
  • Ge, L., Y. Zhang, Z. Wang, J. Zhou, and K. Cen. 2013. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals. Energy Conversion and Management 71:84–91. doi:10.1016/j.enconman.2013.03.021.
  • Ibarra, J., E. Muñoz, and R. Moliner. 1996. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry 24 (6):725–35. doi:10.1016/0146-6380(96)00063-0.
  • Karatepe, N. 2003. Adsorption of a non-ionic dispersant on lignite particle surfaces. Energy Conversion and Management 44 (8):1275–84. doi:10.1016/S0196-8904(02)00122-X.
  • Kazuhiro, M., M. Taisuke, and K. Miura. 2003. A new method for estimating the cross-linking reaction during the pyrolysis of brown coal. Journal of Chemical Engineering of Japan. Titles 44 (5):284. doi:10.1016/S0140-6701(03)91718-8.
  • Li, X., R. K. Rathnam, J. Yu, Q. Wang, T. Wall, and C. Meesri. 2010. Pyrolysis and combustion characteristics of an indonesian low-rank coal under O2/N2 and O2/CO2 conditions†. Energy & Fuels : an American Chemical Society Journal 24 (1):160–64. doi:10.1021/ef900533d.
  • Liu, J., J. Zhu, J. Cheng, J. Zhou, and K. Cen. 2015. Pore structure and fractal analysis of Ximeng lignite under microwave irradiation. Fuel 146:41–50. doi:10.1016/j.fuel.2015.01.019.
  • Liu, M., Y. Duan, and G. Ma. 2015. The effect of organic solvent thermal treatment on the physicochemical properties of lignite. Asia-Pacific Journal of Chemical Engineering 10 (5):724–33. doi:10.1002/apj.1910.
  • Liu, T., J. Cao, X. Zhao, J. Wang, X. Ren, X. Fan, Y. Zhao, and X. Wei. 2017a. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Processing Technology 160:19–26. doi:10.1016/j.fuproc.2017.02.012.
  • Liu, X., F. Cheng, T. Hirajima, and P. Cui. 2019. Effects of activated carbon on optimization of microwave irradiation upgrading of Loy Yang lignite. Asia-Pacific Journal of Chemical Engineering 14:e2276. doi:10.1002/apj.2276.
  • Liu, X., S. Liu, M. Fan, and L. Zhang. 2017b. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel 197:474–81. doi:10.1016/j.fuel.2017.02.065.
  • Lv, D., W. Yuchi, Z. Bai, L. Kong, Z. Guo, J. Yan, and W. Li. 2015. An approach for utilization of direct coal liquefaction residue: Blending with low-rank coal to prepare slurries for gasification. Fuel 145:143–50. doi:10.1016/j.fuel.2014.12.075.
  • Man, C., Y. Liu, X. Zhu, and D. Che. 2014. Moisture readsorption performance of air-dried and hydrothermally dewatered lignite. Energy & Fuels : an American Chemical Society Journal 28 (8):5023–30. doi:10.1021/ef501255n.
  • Menéndez, J. A., A. Arenillas, B. Fidalgo, Y. FernándezL, L. Zubizarreta, E. G. Calvo, and J. W. Bermúdez. 2010. Microwave heating processes involving carbon materials. Fuel Processing Technology 91 (1):1–8. doi:10.1016/j.fuproc.2009.08.021.
  • Park, J., Y. Lee, M. Jin, S. Park, D. Lee, J. Bae, J. Kim, K. Song, and Y. Choi. 2017. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC). Fuel 203:607–17. doi:10.1016/j.fuel.2017.03.016.
  • Ren, Y., J. Zheng, Z. Xu, Y. Zhang, and Z. Cao. 2019. Effect of petcoke on the physical-chemical properties of lignite under microwave pyrolysis and its moisture re-adsorption capacity. Fuel 250:1–7. doi:10.1016/j.fuel.2019.03.090.
  • Ren, Y., J. Zheng, Z. Xu, Y. Zhang, and J. Zheng. 2018a. Application of Turbiscan LAB to study the influence of lignite on the static stability of PCLWS. Fuel 214:446–56. doi:10.1016/j.fuel.2017.08.026.
  • Ren, Y., J. Zheng, Z. Xu, Y. Zhang, and J. Zheng. 2018b. Petroleum coke facilitate the upgrade of lignite under microwave irradiation for slurryability improvement. Fuel 223:414–21. doi:10.1016/j.fuel.2018.03.001.
  • Ren, Y., J. Zheng, X. Yang, Z. Xu, and Z. Cao. 2017. Improvement on slurry ability of lignite under microwave irradiation. Fuel 191:230–38. doi:10.1016/j.fuel.2016.11.047.
  • Samanli, S. 2011. A comparison of the results obtained from grinding in a stirred media mill lignite coal samples treated with microwave and untreated samples. Fuel 90 (2):659–64. doi:10.1016/j.fuel.2010.10.014.
  • Toraman, O. Y. 2010. The effect of high power microwave energy on the grindability of Turkish Cayirhan lignite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (19):1794–800. doi:10.1080/15567030902882976.
  • Uslu, T., Ü. Atalay, and A. I. Arol. 2003. Effect of microwave heating on magnetic separation of pyrite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 225 (1–3):161–67. doi:10.1016/S0927-7757(03)00362-5.
  • Wu, J., J. Liu, Y. Yu, R. Wang, J. Zhou, and K. Cen. 2015. Improving slurryability, rheology, and stability of slurry fuel from blending petroleum coke with lignite. Petroleum Science 12 (1):157–69. doi:10.1007/s12182-014-0008-3.
  • Xiong, G., Y. Li, L. Jin, and H. Hu. 2015. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal. Journal of Analytical and Applied Pyrolysis 115:262–67. doi:10.1016/j.jaap.2015.08.002.
  • Yagmur, E., E. H. Simsek, Z. Aktas, and T. Togrul. 2008. Effect of CuO receptor on the liquid yield and composition of oils derived from liquefaction of coals by microwave energy. Energy Conversion and Management 49 (11):3043–50. doi:10.1016/j.enconman.2008.06.021.
  • Yavuz, R., and S. Küçükbayrak. 2001. An investigation of some factors affecting the dispersant adsorption of lignite. Powder Technol 119 (2):89–94. doi:10.1016/S0032-5910(00)00409-5.
  • Zhou, F., J. Cheng, J. Liu, Z. Wang, J. Zhou, and K. Cen. 2016. Activated carbon and graphite facilitate the upgrading of Indonesian lignite with microwave irradiation for slurryability improvement. Fuel 170:39–48. doi:10.1016/j.fuel.2015.12.034.
  • Zhou, F., J. Cheng, J. Liu, J. Zhou, and K. Cen. 2018. Improving physicochemical properties of upgraded Indonesian lignite through microwave irradiation with char adsorbent. Fuel 218:275–81. doi:10.1016/j.fuel.2018.01.044.
  • Zhou, G., Q. Huang, B. Yu, H. Tong, Y. Chi, and J. Yan. 2017. Effect of industrial microwave irradiation on the physicochemical properties and pyrolysis characteristics of lignite. Chinese Journal of Chemical Engineering 26:S1004954117304792.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.