205
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrogen-rich gas production from soybean straw via microwave pyrolysis under CO2 atmosphere

, , , &
Pages 7752-7761 | Received 18 Mar 2019, Accepted 14 Jul 2019, Published online: 14 Oct 2019

References

  • Abubakar, Z., A. A. Salema, and F. N. Ani. 2013. A new technique to pyrolyse biomass in a microwave system: Effect of stirrer speed. Bioresource Technology 128:578–85. doi:10.1016/j.biortech.2012.10.084.
  • Afgan, N. H., D. A. Gobaisi, M. G. Carvalho, and M. Cumo. 1998. Sustainable energy development. Renewable and Sustainable Energy Reviews 2:235–86. doi:10.1016/S1364-0321(98)00002-1.
  • Beneroso, D., J. M. Bermúdez, A. Arenillas, and J. A. Menéndez. 2013. Microwave pyrolysis of microalgae for high syngas production. Bioresource Technology 144:240–46. doi:10.1016/j.biortech.2013.06.102.
  • Bu, Q., H. W. Lei, S. J. Ren, L. Wang, J. Holladay, Q. Zhang, J. M. Tang, and R. Ruan. 2011. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresource Technology 102:7004–07. doi:10.1016/j.biortech.2011.04.025.
  • Bu, Q., H. W. Lei, S. J. Ren, L. Wang, Q. Zhang, J. M. Tang, and R. Ruan. 2012. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresource Technology 108:274–79. doi:10.1016/j.biortech.2011.12.125.
  • Bu, Q., Y. Liu, J. Liang, H. M. Morgan Jr, L. Yan, F. Xu, and H. Mao. 2018. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using ZSM-5 as a catalyst for high quality bio-oil. Journal of Analytical and Applied Pyrolysis 134:536–43. doi:10.1016/j.jaap.2018.07.021.
  • Chang, Q., R. Gao, H. Li, G. Yu, X. Liu, and F. Wang. 2018. Understanding of formation mechanisms of fine particles formed during rapid pyrolysis of biomass. Fuel 216:538–47. doi:10.1016/j.fuel.2017.12.036.
  • Chum, H. L., and R. P. Overend. 2001. Biomass and renewable fuels. Fuel Processing Technology 71:187–95. doi:10.1016/S0378-3820(01)00146-1.
  • Cunha, M. R., E. C. Lima, N. F. G. M. Cimirro, P. S. Thue, S. L. P. Dias, M. A. Gelesky, G. L. Dotto, G. S. Dos Reis, and F. A. Pavan. 2018. Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. Environmental Science and Pollution Research 25:23315–27. doi:10.1007/s11356-018-2439-7.
  • Domínguez, A., J. A. Menéndez, Y. Fernández, J. J. Pis, J. M. Valente Nabais, P. J. M. Carrott, and M. M. L. Ribeiro Carrott. 2007. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis 79:128–35. doi:10.1016/j.jaap.2006.08.003.
  • Duan, L., C. Zhao, W. Zhou, C. Qu, and X. Chen. 2009. Investigation on Coal Pyrolysis in CO2 Atmosphere. Energy & Fuels : An American Chemical Society Journal 23:3826–30. doi:10.1021/ef9002473.
  • Encinar, J. M., F. J. Beltrán, J. F. González, and M. J. Moreno. 1997. Pyrolysis of maize, sunflower, grape and tobacco residues. Journal of Chemical Technology and Biotechnology 70:400–10. doi:10.1002/(ISSN)1097-4660.
  • Fernando, L. P. R. 2016. Recent advances on fast hydropyrolysis of biomass. Catalysis Today 269:148–55. doi:10.1016/j.cattod.2016.01.004.
  • Fu, M., W. Qi, Q. Xu, S. Zhang, and Y. Yan. 2016. Hydrogen production from Bio-oil model compounds dry (CO2) reforming over Ni/Al2O3 catalyst. International Journal of Hydrogen Energy 41:1494–501. doi:10.1016/j.ijhydene.2015.11.104.
  • Guizani, C., F. J. E. Sanz, and S. Salvador. 2014. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 116:310–20. doi:10.1016/j.fuel.2013.07.101.
  • Gutiérrez Ortiz, F. J., A. Serrera, S. Galera, and P. Ollero. 2013. Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel 105:739–51. doi:10.1016/j.fuel.2012.09.073.
  • Hong, Y., W. Chen, X. Luo, C. Pang, E. Lester, and T. Wu. 2017. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production, Bioresour. Technology 237:47–56.
  • Hossain, M. A., P. Ganesan, J. Jewaratnam, and K. Chinna. 2017. Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production. Energy Conversion and Management 133:349–62. doi:10.1016/j.enconman.2016.10.046.
  • Huang, Y. F., W. H. Kuan, S. L. Lo, and C. F. Lin. 2010. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology 101:1968–73. doi:10.1016/j.biortech.2009.09.073.
  • Imran, A., E. A. Bramer, K. Seshan, and G. Brem. 2014. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Processing Technology 127:72–79. doi:10.1016/j.fuproc.2014.06.011.
  • Inguanzo, M., A. Domínguez, J. A. Menéndez, C. G. Blanco, and J. J. Pis. 2002. On the pyrolysis of sewage sludge: The influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis 63:209–22. doi:10.1016/S0165-2370(01)00155-3.
  • Jr, H. M. M., J. Liang, K. Chen, L. Yan, K. Wang, H. Mao, and Q. Bu. 2018. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst. Journal of Analytical and Applied Pyrolysis 133:107–16. doi:10.1016/j.jaap.2018.04.014.
  • Klinger, J. L., T. L. Westover, R. M. Emerson, C. L. Williams, S. Hernandez, G. D. Monson, and J. C. Ryan. 2018. Effect of biomass type, heating rate, and sample size on microwave enhanced fast pyrolysis product yields and qualities. Applied Energy 228:535–45. doi:10.1016/j.apenergy.2018.06.107.
  • Lestinsky, P., B. Grycova, A. Pryszcz, A. Martaus, and L. Matejova. 2017. Hydrogen production from microwave catalytic pyrolysis of spruce sawdust. Journal of Analytical and Applied Pyrolysis 124:175–79. doi:10.1016/j.jaap.2017.02.008.
  • Li, H., J. Li, X. Fan, X. Li, and X. Gao. 2019. Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation. Fuel 239:219–29. doi:10.1016/j.fuel.2018.10.139.
  • Li, H., X. Li, L. Liu, K. Li, X. Wang, and H. Li. 2016. Experimental study of microwave-assisted pyrolysis of rice straw for hydrogen production. International Journal of Hydrogen Energy 41:2263–67. doi:10.1016/j.ijhydene.2015.11.137.
  • Makkawi, Y., X. Yu, and R. Ocone. 2019. Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor. Renewable Energy 143:1225–34. doi:10.1016/j.renene.2019.05.077.
  • Miura, M., H. Kaga, A. Sakurai, T. Kakuchi, and K. Takahashi. 2004. Rapid pyrolysis of wood block by microwave heating. Journal of Analytical and Applied Pyrolysis 71:187–99. doi:10.1016/S0165-2370(03)00087-1.
  • Mohamed, B. A., N. Ellis, C. Kim, and X. Bi. 2019. Microwave-assisted catalytic biomass pyrolysis: Effects of catalyst mixtures. Applied Catalysis B: Environmental 253:226–34. doi:10.1016/j.apcatb.2019.04.058.
  • Naredi, P., and S. Pisupati. 2011. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion. Energy & Fuels : An American Chemical Society Journal 25:2452–59. doi:10.1021/ef200197w.
  • Pakdel, H., and C. Roy. 1991. Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy & Fuels : An American Chemical Society Journal 5:427–36. doi:10.1021/ef00027a012.
  • Park, H. C., and H. S. Choi. 2019. Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction. Renewable Energy 143:1268–84. doi:10.1016/j.renene.2019.05.072.
  • Parvez, A. M., T. Wu, M. T. Afzal, S. Mareta, T. He, and M. Zhai. 2019. Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production. Fuel Processing Technology 184:1–11. doi:10.1016/j.fuproc.2018.11.007.
  • Persson, H., and W. Yang. 2019. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 252:200–09. doi:10.1016/j.fuel.2019.04.087.
  • Raffelt, K., E. Henrich, A. Koegel, R. Stahl, J. Steinhardt, and F. Weirich. 2006. The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Applied Biochemistry and Biotechnology 129:153–64. doi:10.1385/abab:129:1:153.
  • Raveendran, K., A. Ganesh, and K. C. Khilar. 1996. Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–98. doi:10.1016/0016-2361(96)00030-0.
  • Shi, K., J. Yan, X. Luo, E. Lester, and T. Wu. 2017. Microwave-assisted pyrolysis of bamboo coupled with reforming by activated carbon for the production of hydrogen-rich syngas. Energy Procedia 142:1640–46. doi:10.1016/j.egypro.2017.12.543.
  • Sun, J., K. Wang, Z. Song, Y. Lv, and S. Chen. 2019. Enhancement of bio-oil quality: Metal-induced microwave-assisted pyrolysis coupled with ex-situ catalytic upgrading over HZSM-5. Journal of Analytical and Applied Pyrolysis 137:276–84. doi:10.1016/j.jaap.2018.12.006.
  • Umpierres, C. S., P. S. Thue, E. C. Lima, G. S. D. Reis, I. A. S. De Brum, W. S. Alencar, S. L. P. Dias, and G. L. Dotto. 2018. Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environmental Technology 39:1173–87. doi:10.1080/09593330.2017.1323957.
  • Vamvuka, D. 2011. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. International Journal of Energy Research 35:835–62. doi:10.1002/er.v35.10.
  • Veses, A., M. Aznar, J. M. López, M. S. Callén, R. Murillo, and T. García. 2015. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 141:17–22. doi:10.1016/j.fuel.2014.10.044.
  • Wan, Y., P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin, and R. Ruan. 2009. Microwave assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis 86:161–67. doi:10.1016/j.jaap.2009.05.006.
  • Wang, D., S. Czernik, and E. Chornet. 1998. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy & Fuels : An American Chemical Society Journal 12:19–24. doi:10.1021/ef970102j.
  • Wang, X., W. Chong, K. Wong, S. Lai, L. Saw, X. Xiang, and C. T. Wang. 2019. Preliminary techno–environment–economic evaluation of an innovative hybrid renewable energy harvester system for residential application. Energies 12:1496. doi:10.3390/en12081496.
  • Yan, B., S. Zhang, W. Chen, and Q. Cai. 2018. Pyrolysis of tobacco wastes for bio-oil with aroma compounds. Journal of Analytical and Applied Pyrolysis 136:248–52. doi:10.1016/j.jaap.2018.09.016.
  • Zhang, B., Z. Zhong, P. Chen, and R. Ruan. 2015. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresource Technology 197:79–84. doi:10.1016/j.biortech.2015.08.063.
  • Zhang, Q., J. Chang, T. Wang, and Y. Xu. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48:87–92. doi:10.1016/j.enconman.2006.05.010.
  • Zhao, X., J. Zhang, Z. Song, H. Liu, L. Li, and C. Ma. 2011. Microwave pyrolysis of straw bale and energy balance analysis. Journal of Analytical and Applied Pyrolysis 92:43–49. doi:10.1016/j.jaap.2011.04.004.
  • Zhou, X., W. Li, R. Mabon, and L. J. Broadbelt. 2017. A critical review on hemicellulose pyrolysis. Energy Technology 5:52–79. doi:10.1002/ente.201600327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.