169
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer

, , & ORCID Icon
Pages 7770-7784 | Received 18 May 2019, Accepted 22 Sep 2019, Published online: 18 Oct 2019

References

  • Abedinia, O., N. Amjady, and N. Ghadimi. 2018. Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Computational Intelligence 34 (1):241–60. doi:10.1111/coin.v34.1.
  • Akbary, P., M. Ghiasi, M. R. R. Pourkheranjani, H. Alipour, and N. Ghadimi. 2019. Extracting appropriate nodal marginal prices for all types of committed reserve. Computational Economics 53 (1):1–26. doi:10.1007/s10614-017-9716-2.
  • Bao, C., M. Ouyang, and B. L. Yi. 2006. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems. Journal of Power Sources 156:232–43. doi:10.1016/j.jpowsour.2005.06.008.
  • Beicha, A. 2012. Modeling and simulation of proton exchange membrane fuel cell systems. Journal of Power Sources 205:335–39. doi:10.1016/j.jpowsour.2011.12.059.
  • Carton, J. G., and A. G. Olabi. 2010a. Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply. Energy 35 (12):4536–44. doi:10.1016/j.energy.2010.09.010.
  • Carton, J. G., and A. G. Olabi. 2010b. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell. Energy 35 (7):2796–806. doi:10.1016/j.energy.2010.02.044.
  • Chakraborty, U. K., T. E. Abbott, and S. K. Das. 2012. PEM fuel cell modeling using differential evolution. Energy 40:387–99. doi:10.1016/j.energy.2012.01.039.
  • Correa, J. M., F. A. Farret, V. A. Popov, and M. G. Simoes. 2005. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells. IEEE Transactions on Energy Conversion 20 (1):211–18. doi:10.1109/TEC.2004.842382.
  • Correa, J. M., F. A. Farret, L. N. Canha, and M. G. Simoes. 2004. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Transactions on Industrial Electronics 51 (5):1103–12. doi:10.1109/TIE.2004.834972.
  • Erlin, T.,Ebadi, A. G., Mavaluru, D., Alshehri, M., Mohamed, A. A. B., & Sobhani, B. (2019). Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm. Computational Intelligence. (in press). https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12230
  • Eskandari Nasab, M., I. Maleksaeedi, M. Mohammadi, and N. Ghadimi. 2014. A new multiobjective allocator of capacitor banks and distributed generations using a new investigated differential evolution. Complexity 19 (5):40–54. doi:10.1002/cplx.21489.
  • Ghadimi, N. 2015. A new hybrid algorithm based on optimal fuzzy controller in multimachine power system. Complexity 21 (1):78–93. doi:10.1002/cplx.v21.1.
  • Ghadimi, N., A. Akbarimajd, H. Shayeghi, and O. Abedinia. 2018. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 161:130–42. doi:10.1016/j.energy.2018.07.088.
  • Hamian, M., A. Darvishan, M. Hosseinzadeh, M. J. Lariche, N. Ghadimi, and A. Nouri. 2018. A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm. Engineering Applications of Artificial Intelligence 72:203–12. doi:10.1016/j.engappai.2018.03.022.
  • Huang, S. R., C. C. Wu, C. Y. Lin, and H. T. Chen. 2010. Parameter optimization of the biohydrogen real time power generation system using differential evolution algorithm. International Journal of Hydrogen Energy 35:6629–33. doi:10.1016/j.ijhydene.2010.04.038.
  • Khan, M. J., and M. T. Iqbal. 2005. Modelling and analysis of electro‐chemical, thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel Cells 5 (4):463–75. doi:10.1002/(ISSN)1615-6854.
  • Leng, H., X. Li, J. Zhu, H. Tang, Z. Zhang, and N. Ghadimi. 2018. A new wind power prediction method based on ridgelet transforms, hybrid feature selection and closed-loop forecasting. Advanced Engineering Informatics 36:20–30. doi:10.1016/j.aei.2018.02.006.
  • Liu, Y., W. Wang, and N. Ghadimi. 2017. Electricity load forecasting by an improved forecast engine for building level consumers. Energy 139:18–30. doi:10.1016/j.energy.2017.07.150.
  • Mann, R. F., J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge. 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 86 (1–2):173–80. doi:10.1016/S0378-7753(99)00484-X.
  • Mert, S. O., I. Dincer, and Z. Ozcelik. 2012. Performance investigation of a transportation PEM fuel cell system. International Journal of Hydrogen Energy 37:623–33. doi:10.1016/j.ijhydene.2011.09.021.
  • Mirzapour, F., M. Lakzaei, G. Varamini, M. Teimourian, and N. Ghadimi. 2019. A new prediction model of battery and wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing 10 (1):77–87. doi:10.1007/s12652-017-0600-7.
  • Mo, Z. J., X. J. Zhu, L. Y. Wei, and G. Y. Cao. 2006. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research 30 (8):585–97. doi:10.1002/er.1170.
  • Mohamed, I., and N. Jenkins. 2004. Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms. Journal of Power Sources 131:142–46. doi:10.1016/j.jpowsour.2004.01.012.
  • Mohammadi, M., F. Talebpour, E. Safaee, N. Ghadimi, and O. Abedinia. 2018. Small-scale building load forecast based on hybrid forecast engine. Neural Processing Letters 48 (1):329–51. doi:10.1007/s11063-017-9723-2.
  • Morsali, R., N. Ghadimi, M. Karimi, and S. Mohajeryami. 2015. Solving a novel multiobjective placement problem of recloser and distributed generation sources in simultaneous mode by improved harmony search algorithm. Complexity 21 (1):328–39. doi:10.1002/cplx.v21.1.
  • Morsali, R., M. Mohammadi, I. Maleksaeedi, and N. Ghadimi. 2014. A new multiobjective procedure for solving nonconvex environmental/economic power dispatch. Complexity 20 (2):47–62. doi:10.1002/cplx.v20.2.
  • Parikhani, T., J. Jannatkhah, A. Shokri, and H. Ghaebi. 2019. Thermodynamic analysis and optimization of a novel power generation system based on modified Kalina and GT-MHR cycles. Energy Conversion and Management 196:418–29. doi:10.1016/j.enconman.2019.06.018.
  • Rostamzadeh, H., M. Ebadollahi, H. Ghaebi, and A. Shokri. 2019. Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Conversion and Management 183:210–29. doi:10.1016/j.enconman.2019.01.003.
  • Wee, J.-H. 2007. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews 11:1720–38. doi:10.1016/j.rser.2006.01.005.
  • Yang, S., and N. Wang. 2012. A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model. International Journal of Hydrogen Energy 37 (10):8465–76. doi:10.1016/j.ijhydene.2012.02.131.
  • Zhang, W., N. Wang, and S. Yang. 2013. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell. International Journal of Hydrogen Energy 38 (14):5796–806. doi:10.1016/j.ijhydene.2013.01.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.