401
Views
6
CrossRef citations to date
0
Altmetric
Review

A comprehensive review of froth surface monitoring as an aid for grade and recovery prediction of flotation process. Part B: Texture and dynamic features

, ORCID Icon &
Pages 7812-7834 | Received 19 Jan 2019, Accepted 21 Sep 2019, Published online: 17 Oct 2019

References

  • Albregsten, F. 2008. Statistical texture measures computed from grey level co-occurrence matrices. Technical Note, Norway: Department of Informatics, University of Oslo.
  • Aldrich, C., C. Marais, B. J. Shean, and J. J. Cilliers. 2010. Online monitoring and control of froth flotation systems with machine vision: A review. International Journal of Mineral Processing 96:1. doi:10.1016/j.minpro.2010.04.005.
  • Aldrich, C., D. W. Moolman, S. J. Bunkell, M. C. Harris, and D. A. Theron. 1997. Relationship between surface froth features and process conditions in the batch flotation of a sulphide ore. Minerals Engineering 10 (11):1207. doi:10.1016/S0892-6875(97)00107-6.
  • Aldrich, C., D. W. Moolman, J. J. Eksteen, and J. S. J. Van Deventer. 1995. CHARACTERIZATION OF FLOTATION PROCESSES WITH SELF-ORGANIZING NEURAL NETS. Chemical Engineering Communications 139:25. doi:10.1080/00986449508936396.
  • Aldrich, C., L. K. Smith, D. I. Verrelli, W. J. Bruckard, and M. Kistner. 2018. Multivariate image analysis of realgar–orpiment flotation froths. Mining Proceedings and Extraction Metallurgy 127 (3):146.
  • Aldrich, C., F. D. L. Uahengo, and M. Kistner. 2015. Estimation of particle size in hydrocyclone underflow streams by use of Multivariate Image Analysis. Minerals Engineering 70:14. doi:10.1016/j.mineng.2014.08.018.
  • Amankwah, A., and C. Aldrich. 2015. Motion estimation in flotation froth using the kalman filter. Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy: IEEE International, July 26–31.
  • Backes, A. R., and O. M. Bruno. 2010. Shape classification using complex network and Multi-scale Fractal Dimension. Pattern Recognition Letters 31 (1):44. doi:10.1016/j.patrec.2009.08.007.
  • Banford, A. W., Z. Aktas, and E. T. Woodburn. 1998. Interpretation of the effect of froth structure on the performance of froth flotation using image analysis. Powder Technology 98 (1):61. doi:10.1016/S0032-5910(98)00032-1.
  • Barbian, N., J. J. Cilliers, S. H. Morar, and D. J. Bradshaw. 2007. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing 84 (1–4):81. doi:10.1016/j.minpro.2006.10.009.
  • Barbian, N., K. Hadler, E. Ventura-Medina, and J. J. Cilliers. 2005. The froth stability column: Linking froth stability and flotation performance. Minerals Engineering 18 (3):317–24. doi:10.1016/j.mineng.2004.06.010.
  • Bartolacci, G., P. Pelletier, I. Orford, P. A. Bossé, and J. Fournier. 2006. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes—Part I: Flotation control based on froth textural characteristics. Minerals Engineering 19 (6–8):734. doi:10.1016/j.mineng.2005.09.041.
  • Bharati, M. H., J. J. Liu, and J. F. MacGregor. 2004. Image texture analysis: Methods and comparisons. Chemometrics and Intelligent Laboratory Systems 72:57. doi:10.1016/j.chemolab.2004.02.005.
  • Bonifazi, G., P. Massacci, and A. Meloni. 2000 3D froth modelling by image analysis. XXI International Mineral Processing Congress, Rome, Italy: IMPC, July 23–27.
  • Bonifazi, G., P. Massicci, and A. Meloni. 2000. Prediction of complex sulfide flotation performances by a combined 3D fractal and colour analysis of the froths. Minerals Engineering 13 (7):737–46. doi:10.1016/S0892-6875(00)00058-3.
  • Bonifazi, G., S. Serranti, F. Volpe, and R. Zuco. 2005. Characterisation of flotation froth colour and structure by machine vision. Computers & Geosciences 27 (9):1111. doi:10.1016/S0098-3004(00)00152-7.
  • Botha, C. P., D. M. Weber, M. Van Olst, and D. W. Moolman. 1999. A practical system for real time on plant flotation froth visual parameter extraction. 5th IEEE Africon, Cape Town, South Africa: Cape Technikon, September 28–October 1, 1999. doi:10.1046/j.1469-1809.1999.6320101.x.
  • Cao, B., Y. Xie, W. Gui, L. Wei, and C. Yang. 2013. Integrated prediction model of bauxite concentrate grade based on distributed machine vision. Minerals Engineering 53:31–38. doi:10.1016/j.mineng.2013.07.003.
  • Castineira, D., B. C. Rawlings, and T. F. Edgar. 2012. Multivariate Image Analysis (MIA) for Industrial Flare Combustion Control. Industrial and Engineering Chemistry Research 51:12642. doi:10.1021/ie3003039.
  • Chaudhuri, B. B., and N. Sarkar. 1995. Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence 17:72. doi:10.1109/34.368149.
  • Cipriano, A., M. Guarini, A. Soto, H. Briceno, and D. Mery. 1997. Expert supervision of flotation cells using digital image processing. XX International Mineral Processing Conference, Aachen, Germany, September 21–26.
  • Citir, C., Z. Aktas, and R. Berber. 2004. Off-line image analysis for froth flotation of coal. Computers & Chemical Engineering 28:625. doi:10.1016/j.compchemeng.2004.02.007.
  • Duchesne, C. 2010. Multivariate Image Analysis in Mineral Processing. In Advanced Control and Supervision of Mineral Processing Plants, ed. D. Sbárbaro and R. Del Villar, 85–139/3. 1st ed. London: Springer.
  • Duchesne, C., J. J. Liu, and J. F. MacGregor. 2012. Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems 117:116. doi:10.1016/j.chemolab.2012.04.003.
  • Esbensen, K., and P. Geladi. 1989. Strategy of multivariate image analysis (MIA). Chemometrics and Intelligent Laboratory Systems 7:67. doi:10.1016/0169-7439(89)80112-1.
  • Estrada Ruiz, R. H., and R. Pérez-Garibay. 2009. Evaluation of models for air recovery in a laboratory flotation column. Minerals Engineering 22:1193. doi:10.1016/j.mineng.2009.06.009.
  • Facco, P., E. Tomba, M. Roso, M. Modesti, F. Bezzo, and M. Barolo. 2010. Automatic characterization of nanofiber assemblies by image texture analysis. Chemometrics and Intelligent Laboratory Systems 103:66. doi:10.1016/j.chemolab.2010.05.018.
  • Farrokhpay, S., and M. Zanin. 2011. Effect of water quality on froth stability in flotation. Chemeca 2011, Engineering a Better World Sydney, New South Wales, Australia. September 18–21.
  • Feng, D., and C. Aldrich. 2000. Batch flotation of a complex sulphide ore by use of pulsated sparged air. International Journal of Mineral Processing 60 (2):131. doi:10.1016/S0301-7516(00)00011-9.
  • Feng, D., and C. Aldrich. 2005. Effect of Preconditioning on the Flotation of Coal. Chemical Engineering Communications 192 (7–9):972. doi:10.1080/009864490521534.
  • Forbes, G. 2007. Texture and bubble size measurements for modelling concentrate grade in flotation froth systems. PhD Thesis, South Africa: University of Cape Town. 213. doi:10.1094/PDIS-91-4-0467B.
  • Förstner, W. 1986. A feature-based correspondence algorithm for image matching. International Archives of Photogrammetry and Remote Sensing 26 (3):150.
  • Fu, Y., and C. Aldrich. 2018a. Using Convolutional Neural Networks to Develop State-of-the-Art Flotation Froth Image Sensors. IFAC-Papers Online 51 (21):152. doi:10.1016/j.ifacol.2018.09.408.
  • Fu, Y., and C. Aldrich. 2018b. Froth image analysis by use of transfer learning and convolutional neural networks. Minerals Engineering 115:68. doi:10.1016/j.mineng.2017.10.005.
  • Fu, Y., and C. Aldrich. 2019. Flotation froth image recognition with convolutional neural networks. Minerals Engineering 132:183. doi:10.1016/j.mineng.2018.12.011.
  • Geladi, P. 1988. Notes on the history and nature of partial least squares (PLS) modelling. Journal of Chemometrics 2:231. doi:10.1002/(ISSN)1099-128X.
  • Geladi, P., and H. Grahn. 1996. Multivariate Image Analysis. 1st ed. Chichester, England: John Wiley & Sons Ltd.
  • Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: A tutorial. Analytica Chimica Acta 185:1. doi:10.1016/0003-2670(86)80028-9.
  • Gui, W., J. Liu, C. Yang, N. Chen, and X. Liao. 2013. Color co-occurrence matrix based froth image texture extraction for mineral flotation. Minerals Engineering 46–47:60. doi:10.1016/j.mineng.2013.03.024.
  • Hales, L. B., R. A. Ynchausti, and D. F. Salmon. 1999. Image analysis of froth for improved flotation. Symposium of Advances in Flotation Technology, SME Annual Meeting, Denver, Colourado, March 1–3. doi:10.1046/j.1469-1809.1999.6320101.x.
  • Haralick, R. M. May, 1979. Statistical and Structural Approaches to Texture. Proceedings of the IEEE 67 (5):786–804. doi: 10.1109/PROC.1979.11328.
  • Hargrave, J. M., G. J. Brown, and S. T. Hall. 1998. A Fractal Characterisation of the Structure of Coal Froths. Coal Preparation 19:69. doi:10.1080/07349349808945574.
  • Hargrave, J. M., N. J. Miles, and S. T. Hall. 1996. The use of grey level measurement in predicting coal flotation performance. Minerals Engineering 9:667. doi:10.1016/0892-6875(96)00054-4.
  • Hatfield, D. 2006. The implications of froth structure and surface appearance for flotation performance. Ph.D. thesis. University of Cape Town, 121.
  • He, M., C. Yang, X. Wang, W. Gui, and L. Wei. 2013. Nonparametric density estimation of froth colour texture distribution for monitoring sulphur flotation process. Minerals Engineering 53:203. doi:10.1016/j.mineng.2013.08.011.
  • Holtham, P. N., and L. K. Nguyen. 2002. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam. International Journal of Mineral Processing 64:163. doi:10.1016/S0301-7516(01)00070-9.
  • Horn, Z. C., L. Auret, J. T. McCoy, C. Aldrich, and B. M. Herbst. 2017. Performance of Convolutional Neural Networks for Feature Extraction in Froth Flotation Sensing. IFAC-Papers Online 50 (2):13. doi:10.1016/j.ifacol.2017.12.003.
  • Hosseini, M. R., H. Haji Amin Shirazi, M. Massinaei, and N. Mehrshad. 2015. Modeling the Relationship between Froth Bubble Size and Flotation Performance Using Image Analysis and Neural Networks. Chemical Engineering Communications 202 (7):911. doi:10.1080/00986445.2014.886201.
  • Hyotyniemi, H., and R. Ylinen. 2000. Modeling of visual flotation froth data. Control Engineering Practice 8 (3):313–18. doi:10.1016/S0967-0661(99)00187-2.
  • Jackson, J. E. 1991. A User’s Guide to Principal Components. 1st ed. New York: John Wiley & Sons.
  • Jahedsaravani, A., M. H. Marhaban, and M. Massinaei. 2014. Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Minerals Engineering 69:137. doi:10.1016/j.mineng.2014.08.003.
  • Jahedsaravani, A., M. Massinaei, and M. H. Marhaban. 2016. Application of Image Processing and Adaptive Neuro-fuzzy System for Estimation of the Metallurgical Parameters of a Flotation Process. Chemical Engineering Communications 203 (10):1395. doi:10.1080/00986445.2016.1198897.
  • Jahedsaravani, A., M. Massinaei, and M. H. Marhaban. 2017. Development of a machine vision system for real-time monitoring and control of batch flotation process. International Journal of Mineral Processing 167:16. doi:10.1016/j.minpro.2017.07.011.
  • Kaartinen, J., J. Hatonen, H. Hyotyniemi, and J. Miettunen. 2006. Machine-vision-based control of zinc flotation—A case study. Control Engineering Practice 14:1455. doi:10.1016/j.conengprac.2005.12.004.
  • Karimpouli, S., and P. Tahmasebi. 2019. Image-based velocity estimation of rock using Convolutional Neural Networks. Neural Networks 111:89. doi:10.1016/j.neunet.2018.12.006.
  • Keller, J., M. S. Chen, and R. M. Crownover. 1989. Texture description and segmentation through fractal geometry. Computer Vision, Graphics, and Image Processing 45:150. doi:10.1016/0734-189X(89)90130-8.
  • Kistner, M., G. T. Jemwa, and C. Aldrich. 2013. Monitoring of mineral processing systems by using textural image analysis. Minerals Engineering 52:169. doi:10.1016/j.mineng.2013.05.022.
  • Kumar, S., and G. S. Mittal. 2010. Rapid Detection of Microorganisms Using Image Processing Parameters and Neural Network. Food and Bioprocess Technology 3:741. doi:10.1007/s11947-008-0122-6.
  • Li, J., B. Cao, H. Zhu, and F. Nie. 2017. Flotation froth image texture extraction method based on deterministic tourist walks. Multimedia Tools and Applications 76:15123. doi:10.1007/s11042-017-4603-3.
  • Liu, J., W. Gui, and X. Mu. 2010. Flotation froth image texture feature extraction based on Gabor wavelets. Chinese Journal of Scientific Instrument 31 (8):1699.
  • Liu, J. J., and J. F. MacGregor. 2007. On the extraction of spectral and spatial information from images. Chemometrics and Intelligent Laboratory Systems 85 (1):119. doi:10.1016/j.chemolab.2006.05.011.
  • Liu, J. J., and J. F. MacGregor. 2008. Froth-based modeling and control of flotation processes. Minerals Engineering 21:642. doi:10.1016/j.mineng.2007.12.011.
  • Liu, J. J., J. F. MacGregor, C. Duchesne, and G. Bartolacci. 2005. Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering 18:65. doi:10.1016/j.mineng.2004.05.010.
  • Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. 1st ed. W. H. Freeman & Company, San Francisco.
  • Marais, C., and C. Aldrich. 2011. Estimation of platinum flotation grades from froth image data. Minerals Engineering 24:433. doi:10.1016/j.mineng.2010.12.006.
  • Massinaei, M., A. Jahedsaravani, E. Taheri, and J. Khalilpour. 2019. Machine vision based monitoring and analysis of a coal column flotation circuit. Powder Technology 343:330. doi:10.1016/j.powtec.2018.11.056.
  • Mehrabi, A., N. Mehrshad, and M. Massinaei. 2014. Machine vision based monitoring of an industrial flotation cell in an iron flotation plant. International Journal of Mineral Processing 133:60. doi:10.1016/j.minpro.2014.09.018.
  • Montes-Atenasa, G., F. Seguel, A. Valencia, S. M. Bhatti, M. S. Khan, I. Soto, and N. B. Yoma. 2016. Predicting bubble size and bubble rate data in water and in froth flotation-like slurry from computational fluid dynamics (CFD) by applying deep neural networks (DNN). International Communications in Heat and Mass Transfer 76:197. doi:10.1016/j.icheatmasstransfer.2016.05.031.
  • Moolman, D. M., C. Aldrich, and J. S. J. Van Deventer. 1995. The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chemical Engineering Science 50:3501. doi:10.1016/0009-2509(95)00190-G.
  • Moolman, D. W., C. Aldrich, G. P. J. Schmitz, and J. S. J. Van Deventer. 1996a. The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Engineering 9 (8):837. doi:10.1016/0892-6875(96)00076-3.
  • Moolman, D. W., C. Aldrich, J. S. J. Van Deventer, and W. W. Stange. 1994. Digital image processing as a tool for on-line monitoring of froth in flotation plants. Minerals Engineering 7 (9):1149. doi:10.1016/0892-6875(94)00058-1.
  • Moolman, D. W., J. J. Eksteen, C. Aldrich, and J. S. J. Van Deventer. 1996b. The significance of flotation froth appearance for machine vision control. International Journal of Mineral Processing 48 (3–4):135. doi:10.1016/S0301-7516(96)00022-1.
  • Moolman, L. W., C. Aldrich, J. S. J. Van Deventer, and W. W. Stange. 1995. The classification of froth structures in a copper flotation plant by means of a neural net. International Journal of Mineral Processing 43:193. doi:10.1016/0301-7516(95)00003-V.
  • Morar, S. H., D. J. Bradshaw, and M. C. Harris. 2012. The use of the froth surface lamellae burst rate as a flotation froth stability measurement. Minerals Engineering 36–38:152. doi:10.1016/j.mineng.2012.03.018.
  • Morar, S. H., M. C. Harris, and D. J. Bradshaw. 2012. The use of machine vision to predict flotation performance. Minerals Engineering 36–38:31. doi:10.1016/j.mineng.2012.02.010.
  • Morar, S. H., D. P. Hatfield, N. Barbian, D. J. Bradshaw, J. J. Cilliers, and B. Triffett. 2006. A comparison of flotation froth stability measurements and their use in the prediction of concentrate grade. XXIII International Mineral Processing Congress, Istanbul, Turkey, September 3-8.
  • Nakhaei, F., and M. Irannajad. 2013. Comparison between neural networks and multiple regression methods in metallurgical performance modeling of flotation column. Physicochemical Problems of Mineral Processing 49 (1):255.
  • Nakhaei, F., M. Irannajad, and S. Mohammadnejad. 2018. Evaluation of column flotation froth behavior by image analysis: Effects of operational factors in desulfurization of iron ore concentrate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (19):2286. doi:10.1080/15567036.2018.1486485.
  • Nakhaei, F., M. R. Mosavi, and A. Sam. 2013. Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm. International Journal of Mining Science and Technology 23:69. doi:10.1016/j.ijmst.2013.01.011.
  • Nakhaei, F., M. R. Mosavi, A. Sam, and Y. Vaghei. 2012. Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neural network and statistical techniques. International Journal of Mineral Processing 110–111:140. doi:10.1016/j.minpro.2012.03.003.
  • Nakhaei, F., A. Sam, and M. R. Mosavi. 2013. Concentrate Grade Prediction in an Industrial Flotation Column Using Artificial Neural Network. Arabian Journal for Science and Engineering 38 (5):1011. doi:10.1007/s13369-012-0350-y.
  • Nayaka, S. R., and J. Mishrab. 2016. An improved method to estimate the fractal dimension of colour images. Perspectives in Science 8:412. doi:10.1016/j.pisc.2016.04.092.
  • Neethling, S. J., H. T. Lee, and J. J. Cilliers. 2003. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering 16:1123. doi:10.1016/j.mineng.2003.06.014.
  • Nguyen, K. K., and P. Holtham. 1997. The application of pixel tracing techniques in the flotation process. The First Joint Australian and New Zealand Biennial Conference on Digital Imaging and Vision Computing and Applications, Auckland, New Zealand, December 10–12.
  • Palm, C. 2004. Color texture classification by integrative Co-occurrence matrices. Pattern Recognition 37:965. doi:10.1016/j.patcog.2003.09.010.
  • Pentland, A. P. 1984. Fractal-Based Description of Natural Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:661. doi:10.1109/TPAMI.1984.4767591.
  • Pichler, O., A. Teuner, and B. J. Hosticka. 1996. A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recognition 29 (5):733. doi:10.1016/0031-3203(95)00127-1.
  • Popli, K., M. Sekhavat, A. Afacan, S. Dubljevic, Q. Liu, and V. Prasad. 2015. Dynamic Modeling and Real-Time Monitoring of Froth Flotation. Minerals 5:570. doi:10.3390/min5030510.
  • Prats-Montalbán, J. M., A. de Juan, and A. Ferrer. 2011. Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems 107:1. doi:10.1016/j.chemolab.2011.03.002.
  • PratsMontalbán, J. M., and A. Ferrer. 2014. Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering 71:501. doi:10.1016/j.compchemeng.2014.09.014.
  • Pratt, W. K. 2001. Digital Image Processing. 3rd ed. New York: John Wiley & Sons.
  • Reisa, M. S., and A. Bauer. 2010. Image-based classification of paper surface quality using wavelet texture analysis. Computers & Chemical Engineering 34:2014. doi:10.1016/j.compchemeng.2010.06.013.
  • Saghatoleslami, N., H. Karimi, R. Rahimi, and H. H. A. Shirazi. 2004. Modeling of texture and color froth characteristics for evaluation of flotation performance in Sarcheshmeh copper pilot plant, using image analysis and neural networks. International Journal of Engineering, Transactions B 17 (2):121.
  • Sarkar, A., K. M. S. Sharma, and R. V. Sonak. 1997. A new approach for subset 2-D AR model identification for describing textures. IEEE Transactions on Image Processing 6:407. doi:10.1109/83.557348.
  • Shearer, S. A., and R. G. Holmes. 1990. Plant identification using color co-occurrence matrices. Transactions of the ASABE 33 (6):2037.
  • Simoncelli, E. P., W. T. Freeman, E. H. Adelson, and D. J. Heeger. 1992. Shiftable multiscale transforms. IEEE Transactions on Information Theory 38 (2):587. doi:10.1109/18.119725.
  • Singh, V., and S. Mohan Rao. 2005. Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Minerals Engineering 18:1412. doi:10.1016/j.mineng.2005.03.003.
  • Tan, J., L. Liang, Y. Peng, and G. Xie. 2016. The concentrate ash content analysis of coal flotation based on froth images. Minerals Engineering 92:9–20. doi:10.1016/j.mineng.2016.02.006.
  • Tang, M., C. Zhou, N. Zhang, C. Liu, J. Pan, and S. Cao. 2018. Prediction of the ash content of flotation concentrate based on froth image processing and BP neural network modeling. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2018.1458716.
  • Tang, Z., C. Zhu, and J. Liu. 2011. Flotation froth image texture extraction based on LBPV. Applied Research Computing 28 (10):3934.
  • Tian, D. P. 2013. A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering 8 (4):385.
  • Tsatsanis, M. K., and G. B. Giannakis. 1992. Object and texture classification using higher order statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (7):733. doi:10.1109/34.142910.
  • Unser, M. 1995. Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 4 (11):1549. doi:10.1109/83.469936.
  • Vanegas, C., and P. Holtham. 2008. On-line froth acoustic emission measurements in industrial sites. Minerals Engineering 21:883. doi:10.1016/j.mineng.2008.04.007.
  • Vidakovic, B. 1999. Statistical Modeling by Wavelets. 1st ed. New York: John Wiley & Sons.
  • Wang, J. S., S. Han, and N. N. Shen. 2014. Features extraction of flotation froth images and BP neural network soft-sensor model of concentrate grade optimized by shuffled cuckoo searching algorithm. The Scientific World Journal 2014 :17.
  • Wang, Q., M. Huang, and X. Zhou. 2018. Feature selection in froth flotation for production condition recognition. IFAC Papers On Line 51 (21):123. doi:10.1016/j.ifacol.2018.09.403.
  • Wang, X., C. Song, C. Yang, and Y. Xie. 2018. Process working condition recognition based on the fusion of morphological andpixel set features of froth for froth flotation. Minerals Engineering 128:17. doi:10.1016/j.mineng.2018.08.017.
  • Wang, Z., H. Li, Y. Zhu, and T. F. Xu. 2016. Review of Plant Identification Based on Image Processing. Archives of Computational Methods in Engineering 24 (3):637. doi:10.1007/s11831-016-9181-4.
  • Winkler, G. 2003. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. 2nd ed. Berlin: Springer.
  • Wright, B. 1997. An investigation into the use of the watershed transform for the real-time segmentation of flotation froth images. Master’s thesis. University of Cape Town. 145.
  • Xu, D., X. Chen, Y. Xie, C. Yang, and W. Gui. 2015. Complex networks-based texture extraction and classification method for mineral flotation froth images. Minerals Engineering 83:105. doi:10.1016/j.mineng.2015.08.017.
  • Yang, X. S., and C. Aldrich. 2005. Relationship between solids flux and froth features in batch flotation of sulphide ore. Transactions of Nonferrous Metals Society of China 15 (6):1373.
  • Yang, X. S., and C. Aldrich. 2006. Effects of impeller speed and aeration rate on flotation performance of sulphide ore. Transactions of Nonferrous Metals Society of China 16 (1):185. doi:10.1016/S1003-6326(06)60033-2.
  • Yu, H., and J. F. MacGregor. 2004. Monitoring flames in an industrial boiler using multivariate image analysis. American Institute of Chemical Engineers Journal 50 (7):1474. doi:10.1002/(ISSN)1547-5905.
  • Zhang, H., Y. Kuang, G. Wang, and L. Ji. 2014. Soft Sensor Model for Coal Slurry Ash Content Based on Image Gray Characteristics. International Journal of Coal Preparation and Utilization 34 (1):24. doi:10.1080/19392699.2013.841677.
  • Zhang, J., Z. Tang, J. Liu, Z. Tan, and P. Xu. 2016. Recognition of flotation working conditions through froth image statistical modeling for performance monitoring. Minerals Engineering 86:116. doi:10.1016/j.mineng.2015.12.008.
  • Zheng, X., J. P. Franzidis, and N. W. Johnson. 2006. An evaluation of different models of water recovery in flotation. Minerals Engineering 19:871. doi:10.1016/j.mineng.2005.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.