64
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Influence of kinetic parameters on Calotropis procera by TGA under pyrolytic conditions

, , &
Pages 8257-8270 | Received 22 Mar 2019, Accepted 14 Jul 2019, Published online: 21 Oct 2019

References

  • Aboyade, A. O., J. Thomas, M. Carrier, E. L. Meyer, R. Stahl, J. H. Knoetze, and J. F. Görgens. 2011. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochimica Acta 517:81–89. doi:10.1016/j.tca.2011.01.035.
  • Ajay, K., L. Wang, Y. A. Dzenis, D. D. Jones, and M. A. Hanna. 2008. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy 32 (5):460–67. doi:10.1016/j.biombioe.2007.11.004.
  • Aworh, O. C., and H. G. Muller. 1987. Cheese-making properties of vegetable rennet from sodom apple (Calotropis procera). Food Chemistry 26:71–79. doi:10.1016/0308-8146(87)90168-3.
  • Aworh, O. C., V. Kasche, and O. O. Apampa. 1994. Purification and some properties of sodom-apple latex proteinases. Food Chemistry 50:359–62. doi:10.1016/0308-8146(94)90204-6.
  • Aysu, T., and D. Halil. 2015. Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. Journal of Analytical and Applied Pyrolysis 111:156–72. doi:10.1016/j.jaap.2014.11.017.
  • Channiwala, S. A., and P. P. Parikh. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–63. doi:10.1016/S0016-2361(01)00131-4.
  • Chen, D., J. Zhou, and Q. Zhang. 2014. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresource Technology 169:313–19. doi:10.1016/j.biortech.2014.07.009.
  • Chen, J., X. Fan, B. Jiang, L. Mu, P. Yao, H. Yin, and X. Song. 2015. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics and products characterization. Bioresource Technology 192:592–602. doi:10.1016/j.biortech.2015.05.108.
  • Chen, Z., M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu, B. Xiao, J. Wang, and M. Laghari. 2015. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology 192:441–50. doi:10.1016/j.biortech.2015.05.062.
  • Chutia, R. S., R. Kataki, and T. Bhaskar. 2013. Thermogravimetric and decomposition kinetic studies of Mesua L. deoiled cake. Bioresource Technology 139:66–72. doi:10.1016/j.biortech.2013.03.191.
  • El-Sayed, S. A., and M. E. Mostafa. 2015. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste and Biomass Valorization 6 (3):401–15. doi:10.1007/s12649-015-9354-7.
  • Erdman, M. D., and B. A. Erdman. 1981. Calotropis procera as a source of plant hydrocarbons. Economic Botany 35 (4):467–72. doi:10.1007/BF02858597.
  • Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. doi:10.1080/1023666X.2018.1439560.
  • Ganeshan, P., S. S. Kumaran, K. Raja, and D. Venkateswarlu. 2018. An investigation of mechanical properties of madar fiber reinforced polyester composites for various fiber length and fiber content. Materials Research Express 6 (1):015303. doi:10.1088/2053-1591/aae5bd.
  • Greenhalf, C. E., D. J. Nowakowski, A. B. Harms, J. O. Titiloye, and A. V. Bridgwater. 2013. A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108:216–30. doi:10.1016/j.fuel.2013.01.075.
  • Greenhalf, C. E., D. J. Nowakowski, A. V. Bridgwater, J. Titiloye, N. Yates, A. Riche, and I. Shield. 2012. Thermochemical characterisation of straws and high yielding perennial grasses. Industrial Crops and Products 36 (1):449–59. doi:10.1016/j.indcrop.2011.10.025.
  • Haykiri-Acma, H., S. Yaman, and S. Kucukbayrak. 2006. Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy 31:803–10. doi:10.1016/j.renene.2005.03.013.
  • Ishahak, W. N. R. W., M. W. Hisham, M. A. Yarmo, and T.-Y. Yun Hin. 2012. A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews 16:5910–23. doi:10.1016/j.rser.2012.05.039.
  • Kalita, D., and C. N. Saikia. 2006. Chemical constituents and energy content of some latex bearing plants. Bioresource Technology 92:219–27. doi:10.1016/j.biortech.2003.10.004.
  • Kalitha, D. 2006. Potentiality of hydrocarbon yielding plants for future energy and chemicals. Desert Plants:35–56.
  • Kılıç, M., E. Pütün, and A. E. Pütün. 2014. Optimization of Euphorbia rigida fast pyrolysis conditions by using response surface methodology. Journal of Analytical and Applied Pyrolysis 110:163–71. doi:10.1016/j.jaap.2014.08.018.
  • Kirtikar, K. R., and B. D. Basu. 1918. Indian medicinal plants, vol. 3. Bishen Singh Mahendra Pal Singh and periodical experts.
  • Kumar, P. S., E. Suresh, and S. Kalavathy. 2013. Review on a potential herb Calotropis gigantea (L.) R. Br. Scholars Academic Journal of Biosciences 2:135–43.
  • Kumar, R., S. Singh, and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology 35:377–91. doi:10.1007/s10295-008-0327-8.
  • Nasser, R. A., H. A. Al-Mefarrej, P. R. Khan, and K. H. Alhafta. 2012. Technological properties of Calotropis procera (Ait) wood and its relation to utilizations. American-Eurasian Journal of Agricultural & Environmental Sciences 12:5–16.
  • Odetoye, T. E., K. R. Onifade, M. S. AbuBakar, and J. O. Titiloye. 2014. Pyrolysis of parinari polyandra benth fruit shell for bio-oil production. Biofuel Research Journal 1:85–90. doi:10.18331/BRJ2015.1.3.5.
  • Pimenidou, P., and V. Dupont. 2012. Characterisation of palm empty fruit bunch (PEFB) and pinewood bio-oils and kinetics of their thermal degradation. Bioresource Technology 109:198–205. doi:10.1016/j.biortech.2012.01.020.
  • Radhaboy, G., M. Pugazhvadivu, P. Ganeshan, and P. Ramshankar. 2019. Analysis of thermo chemical behavior of Calotropis procera parts for their potentiality. International Journal of Ambient Energy:1–7. doi:10.1080/01430750.2019.1630309.
  • Ramos, M. V., V. C. Aguiar, V. M. M. Melo, R. O. Mesquita, P. P. Silvestre, J. S. Oliveira, R. S. B. Oliveira, N. M. R. Macedo, and N. M. N. Alencar. 2007. Immunological and Allergenic Responses Induced by Latex Fractions of Calotropis procera (Ait.)R.Br. The Journal of Ethnopharmacology 111:115–22. doi:10.1016/j.jep.2006.10.034.
  • Roy, S., R. Sehgal, B. M. Padhy, and V. L. Kumar. 2005. Antioxidant and protective effect of latex of Calotropis procera against alloxan-induced diabetes in rats. Journal of Ethnopharmacology 102 (3):470–73. doi:10.1016/j.jep.2005.06.026.
  • Saidur, R., E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef. 2011. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 5:2262–89. doi:10.1016/j.rser.2011.02.015.
  • Shadangi, K. P., and K. Mohanty. 2014. Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renewable Energy 63:337–44. doi:10.1016/j.renene.2013.09.039.
  • Shobowale, O. O., N. J. Ogbulie, E. E. Itoandon, M. O. Oresegun, and S. O. A. Olatope. 2013. Phytochemical and antimicrobial evaluation of aqueous and organic extracts of Calotropis procera ait leaf and latex. Nigerian Food Journal 31:77–82. doi:10.1016/S0189-7241(15)30059-X.
  • Shuping, Z., W. Yulong, Y. Mingde, L. Chun, and T. Junmao. 2010. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology 101:359–65. doi:10.1016/j.biortech.2009.08.020.
  • Singh, J., and S. Gu. 2010. Biomass conversion to energy in India—A critique. Renewable and Sustainable Energy Reviews 14:1367–78. doi:10.1016/j.rser.2010.01.013.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89:913–33. doi:10.1016/j.fuel.2009.10.022.
  • Verma, R., G. P. Satsangi, and J. N. Shrivastava. 2010. Ethno-medicinal profile of different plant parts of Calotropis procera (Ait.)R. Br. Ethnobotanical Leaflets 7:3.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Yoganandam, K., P. Ganeshan, B. NagarajaGanesh, and K. Raja. 2019. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 1–13. doi:10.1080/15440478.2019.1588831.
  • Yoganandam, K., P. Ramshankar, P. Ganeshan, and K. Raja. 2018. Mechanical properties of alkali-treated Madar and Gongura fibre-reinforced polymer composites. International Journal of Ambient Energy 1–2. doi:10.1080/01430750.2018.1477066.
  • Zhang, L., F. Duan, and Y. Huang. 2015. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation. Bioresour.technol. 181:62–71. doi:10.1016/j.biortech.2015.01.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.