58
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical and Galerkin’s methods for thermal performance analysis of circular porous fins with various profiles when the surface temperature is higher/lower than the air temperature

&
Pages 8301-8319 | Received 28 May 2019, Accepted 15 Jul 2019, Published online: 17 Oct 2019

References

  • Alhumoud, J. M. 2019. Non-equilibrium natural gas convection flow through a porous media. Mathematical Modelling of Engineering Problems 6 (2):163–69. doi:10.18280/mmep.060202.
  • Arslanturk, C. 2005. Simple correlation equations for optimum design of annular fins with uniform thickness. Applied Thermal Engineering 25:2463–68. doi:10.1016/j.applthermaleng.2004.12.007.
  • Campus, B. E. 2003. Natural convection heat transfer from a cylinder with high conductivity permeable fins.
  • Cicelia, J. E. 2014. Solution of weighted residual problems by using galerkin’s method. Indian Journal of Science and Technology 7:52–54.
  • Dennis, J., and D. J. Woods. 1987. Optimization on microcomputers: The nelder-mead simplex algorithm. New Computing Environments: Microcomputers in Large-scale Computing 11:6–122.
  • Fidanoglu, M., G. Komurgoz, and I. Ozkol. 2016. Heat transfer analysis of fins with spine geometry using differential transform method. International Journal of Mechanical Engineering and Robotics Research 5 (1):67–71.
  • Gorla, R. S. R., and A. Bakier. 2011. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer 38:638–45. doi:10.1016/j.icheatmasstransfer.2010.12.024.
  • Grandin, H. 1987. Fundamentals of the finite element method. New York, NY:Macmillan Publishing Company.
  • Hatami, M., G. R. M. Ahangar, D. Ganji, and K. Boubaker. 2014. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management 84:533–40. doi:10.1016/j.enconman.2014.05.007.
  • Hatami, M., and D. Ganji. 2014. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration 40:140–51. doi:10.1016/j.ijrefrig.2013.11.002.
  • Hazarika, S. A., D. Bhanja, S. Nath, and B. Kundu. 2016. Geometric optimization and performance study of a constructal t-shaped fin under simultaneous heat and mass transfer. Applied Thermal Engineering 109:162–74. doi:10.1016/j.applthermaleng.2016.08.007.
  • Jooma, R., and C. Harley. 2017. Heat transfer in a porous radial fin: Analysis of numerically obtained solutions. Advances in Mathematical Physics Article ID 1658305, 20. doi:10.1155/2017/1658305.
  • Kim, S., J. Paek, and B. Kang. 2000. Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. Journal of Heat Transfer 122:572–78. doi:10.1115/1.1287170.
  • Kiwan, S. 2007a. Thermal analysis of natural convection porous fins. Transport in Porous Media 67:17–20. doi:10.1007/s11242-006-0010-3.
  • Kiwan, S. 2007b. Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences 46:1046–55. doi:10.1016/j.ijthermalsci.2006.11.013.
  • Kiwan, S., and M. Al-Nimr. 2001. Using porous fins for heat transfer enhancement. Journal of Heat Transfer 123:790–95. doi:10.1115/1.1371922.
  • Kundu, B., and D. Bhanja. 2011. An analytical prediction for performance and optimum design analysis of porous fins. International Journal of Refrigeration 34:337–52. doi:10.1016/j.ijrefrig.2010.06.011.
  • Kundu, B., D. Bhanja, and K.-S. Lee. 2012. A model on the basis of analytics for computing maximum heat transfer in porous fins. International Journal of Heat and Mass Transfer 55:7611–22. doi:10.1016/j.ijheatmasstransfer.2012.07.069.
  • Kundu, B., and P. Das. 2002. Performance analysis and optimization of straight taper fins with variable heat transfer coefficient. International Journal of Heat and Mass Transfer 45:4739–51. doi:10.1016/S0017-9310(02)00189-8.
  • Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. 1998. Convergence properties of the nelder–Mead simplex method in low dimensions. SIAM Journal on Optimization 9:112–27. doi:10.1137/S1052623496303470.
  • Mokheimer, E. M. 2002. Performance of annular fins with different profiles subject to variable heat transfer coefficient. International Journal of Heat and Mass Transfer 45:3631–42. doi:10.1016/S0017-9310(02)00078-9.
  • Moradi, A., T. Hayat, and A. Alsaedi. 2014. Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by dtm. Energy Conversion and Management 77:70–77. doi:10.1016/j.enconman.2013.09.016.
  • Nelder, J. A., and R. Mead. 1965. A simplex method for function minimization. The Computer Journal 7:308–11. doi:10.1093/comjnl/7.4.308.
  • Nield, D. A., and A. Bejan. 2006. Nield-Bejan … Convection in porous media, 3 rd edition. New York, NY: Springer-Verlag.
  • Patel, T., and R. Meher. 2017. Thermal analysis of porous fin with uniform magnetic field using Adomian decomposition Sumudutransform method. Nonlinear Engineering 6 (3):191–200. doi:10.1515/nleng-2017-0021.
  • Razelos, P., and K. Imre. 1980. The optimum dimensions of circular fins with variable thermal parameters. Journal of Heat Transfer 102:420–25. doi:10.1115/1.3244316.
  • Sabbaghi, S., A. Rezaii, G. R. Shahri, and M. Baktash. 2011. Mathematical analysis for the efficiency of a semi-spherical fin with simultaneous heat and mass transfer. International Journal of Refrigeration 34:1877–82. doi:10.1016/j.ijrefrig.2011.06.014.
  • Saedodin, S., and S. Sadeghi. 2013. Temperature distribution in long porous fins in natural convection condition. Middle-East Journal of Scientific Research 13:812–17.
  • Sharqawy, M. H., and S. M. Zubair. 2008. Efficiency and optimization of straight fins with combined heat and mass transfer–An analytical solution. Applied Thermal Engineering 28:2279–88. doi:10.1016/j.applthermaleng.2008.01.003.
  • Singer, S., and S. Singer. 2004. Efficient implementation of the nelder–Mead search algorithm. Applied Numerical Analysis & Computational Mathematics 1:524534. doi:10.1002/anac.200410015.
  • Singh, S., D. Kumar, and K. Rai. 2018. Analytical solution of fourier and non-fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition. International Journal of Thermal Sciences 125:166–75. doi:10.1016/j.ijthermalsci.2017.11.029.
  • Sobamowo, M. G. 2017. Communication in mathematical modeling and applications heat transfer study in porous fin with temperature-dependent thermal conductivity and internal heat generation using Legendre wavelet collocation method. Communication in Mathematical Modeling and Applications 2 (3):16–28.
  • Vahabzadeh, A., D. Ganji, and M. Abbasi. 2015. Analytical investigation of porous pin fins with variable section in fully-wet conditions. Case Studies in Thermal Engineering 5:1–12. doi:10.1016/j.csite.2014.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.