182
Views
3
CrossRef citations to date
0
Altmetric
Research Article

An equivalent mathematical model for 2D stimulated reservoir volume simulation of hydraulic fracturing in unconventional reservoirs

ORCID Icon, , , , &
Pages 8946-8964 | Received 07 Jan 2019, Accepted 18 Jul 2019, Published online: 21 Oct 2019

References

  • Ahn, C. H., R. Dilmore, and J. Y. Wang. 2014. Development of innovative and efficient hydraulic fracturing numerical simulation model and parametric studies in unconventional naturally fractured reservoirs. Journal of Unconventional Oil and Gas Resources 8:25–45. doi:10.1016/j.juogr.2014.06.003.
  • Bear, J., C. F. Tsang, and G. De Marsily. 1993. Flow and contaminant transport in fractured rock. San Diego, CA: Academic Press, Inc.
  • Chen, H., X. Meng, F. Niu, Y. Tang, C. Yin, and F. Wu. 2018a. Microseismic monitoring of stimulating shale gas reservoir in SW China: 2. Spatial clustering controlled by the preexisting faults and fractures. Journal of Geophysical Research: Solid Earth 123 (2):1659–72.
  • Chen, Z., Z. Yang, and M. Wang. 2018b. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures. Journal of Petroleum Science and Engineering 163:421–34. doi:10.1016/j.petrol.2017.12.092.
  • Cheng, W., Y. Jin, and M. Chen. 2015. Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs. Journal of Natural Gas Science and Engineering 27:1357–65. doi:10.1016/j.jngse.2015.11.018.
  • Chong, Z., X. Li, X. Chen, J. Zhang, and J. Lu. 2017. Numerical investigation into the effect of natural fracture density on hydraulic fracture network propagation. Energies 10 (7):914. doi:10.3390/en10070914.
  • Cipolla, C. L., E. P. Lolon, J. C. Erdle, and B. Rubin. 2010. Reservoir modeling in shale-gas reservoirs. SPE Reservoir Evaluation and Engineering 13 (04):638–53. doi:10.2118/125530-PA.
  • Cipolla, C. L., E. P. Lolon, and M. J. Mayerhofer. 2009. Reservoir modeling and production evaluation in shale-gas reservoirs. Paper SPE 13185 presented at International Petroleum Technology Conference, Doha, Qatar.
  • Fanchi, J. R. 2008. Directional permeability. SPE Reservoir Evaluation and Engineering 11 (03):565–68. doi:10.2118/102343-PA.
  • Fatahi, H., M. M. Hossain, and M. Sarmadivaleh. 2017. Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture. Journal of Natural Gas Science and Engineering 37:409–24. doi:10.1016/j.jngse.2016.11.054.
  • Ge, J., and A. Ghassemi. 2011. Permeability enhancement in shale gas reservoirs after stimulation by hydraulic fracturing. In:45th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco, California, June 26–29.
  • Ge, J., and A. Ghassemi. 2012. Stimulated reservoir volume by hydraulic fracturing in naturally fractured shale gas reservoirs. In: 46th US rock mechanics/geomechanics symposium, American Rock Mechanics Association, Chicago, June 24–27. doi:10.1094/PDIS-11-11-0999-PDN.
  • Ghassemi, A., X. X. Zhou, and C. Rawal. 2013. A three-dimensional poroelastic analysis of rock failure around a hydraulic fracture. Journal of Petroleum Science and Engineering 108:118–27. doi:10.1016/j.petrol.2013.06.005.
  • Guo, T., S. Zhang, Z. Qu, T. Zhou, Y. Xiao, and J. Gao. 2014. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel 128:373–80. doi:10.1016/j.fuel.2014.03.029.
  • He, J., Z. Zhang, and X. Li. 2017. Numerical analysis on the formation of fracture network during the hydraulic fracturing of shale with pre-existing fractures. Energies 10 (6):736. doi:10.3390/en10060736.
  • Hou, B., M. Chen, W. Cheng, and C. Diao. 2016. Investigation of hydraulic fracture networks in shale gas reservoirs with random fractures. Arabian Journal for Science and Engineering 41 (7):2681–91. doi:10.1007/s13369-015-1829-0.
  • Hu, Y., Li, Z., Zhao, J., Ren, L., and Wang, D. 2016. Optimization of hydraulic fracture-network parameters based on production simulation in shale gas reservoirs. Journal of Engineering Research 4 (4):159–180.
  • Hu, Y., Z. Li, J. Zhao, Z. Tao, and P. Gao. 2017. Prediction and analysis of the stimulated reservoir volume for shale gas reservoirs based on rock failure mechanism. Environmental Earth Sciences 76 (15):546. doi:10.1007/s12665-017-6830-3.
  • Huang, J., and A. A. Ghassemi. 2015. Poroelastic model for evolution of fractured reservoirs during gas production. Journal of Petroleum Science and Engineering 135:626–44. doi:10.1016/j.petrol.2015.10.007.
  • Kresse, O., X. Weng, H. Gu, and R. Wu. 2013. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mechanics and Rock Engineering 46 (3):555–68. doi:10.1007/s00603-012-0359-2.
  • Li, Z., Yan, W., Qi, Z., Dong, D., Huang, X., and Yu, R. 2019. Production performance model based on quadruple-porosity medium in shale gas reservoirs considering multi-transport mechanisms. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19.
  • Lin, R., L. Ren, J. Zhao, L. Wu, and Y. Li. 2017. Cluster spacing optimization of multi-stage fracturing in horizontal shale gas wells based on stimulated reservoir volume evaluation. Arabian Journal of Geosciences 10 (2):38. doi:10.1007/s12517-016-2823-x.
  • Luo, Z., N. Zhang, L. Zhao, L. Ran, and Y. Zhang. 2019. Numerical evaluation of shear and tensile stimulation volumes based on natural fracture failure mechanism in tight and shale reservoirs. Environmental Earth Sciences 78 (5):175. doi:10.1007/s12665-019-8157-8.
  • Mayerhofer, M. J., E. Lolon, N. R. Warpinski, C. L. Cipolla, D. W. Walser, and C. M. Rightmire. 2010. What is stimulated reservoir volume? SPE Production and Operations 25 (1):89–98. doi:10.2118/119890-PA.
  • Meng, X., H. Chen, F. Niu, Y. Tang, C. Yin, and F. Wu. 2018. Microseismic monitoring of stimulating shale gas reservoir in SW China: 1. An improved matching and locating technique for downhole monitoring. Journal of Geophysical Research: Solid Earth 123 (2):1643–58.
  • Nagel, N. B., M. A. Sanchez-Nagel, F. Zhang, X. Garcia, and B. Lee. 2013. Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mechanics and Rock Engineering 46 (3):581–609. doi:10.1007/s00603-013-0391-x.
  • Nassir, M., A. Settari, and R. G. Wan. 2012. Prediction and optimization of fracturing in tight gas and shale using a coupled geomechanical model of combined tensile and shear fracturing. Paper SPE-152200-MS presented at the SPE hydraulic fracturing technology conference, The Woodlands, February 6–8. doi:10.1094/PDIS-11-11-0999-PDN.
  • Nassir, M., A. Settari, and R. G. Wan. 2014. Prediction of stimulated reservoir volume and optimization of fracturing in tight gas and shale with a fully elasto-plastic coupled geomechanical model. SPE Journal 19 (05):771–85. doi:10.2118/163814-PA.
  • Ning, L., Z. Shicheng, Z. Yushi, M. Xinfang, W. Shan, and Z. Yinuo. 2018. Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation. Rock Mechanics and Rock Engineering 51 (4):1047–62. doi:10.1007/s00603-017-1383-z.
  • Palmer, I., Cameron, J., and Ponce, J. 2009. Natural fractures influence shear stimulation direction. Oil and Gas Journal 107 (12):37–43.
  • Palmer, I. D., Z. A. Moschovidis, and A. Schaefer. 2013. Microseismic clouds: Modeling andimplications. SPE Production & Operations 28 (02):181–90.
  • Palmer, I. D., Z. A. Moschovidis, and J. R. Cameron. 2007. Modeling shear failure and stimulation of the Barnett shale after hydraulic fracturing. Paper SPE-106113-MS presented at the hydraulic fracturing technology conference, College Station, January 29–31. doi:10.1094/PDIS-91-4-0467B.
  • Ren, L., R. Lin, and J. Zhao. 2018a. Stimulated reservoir volume estimation and analysis of hydraulic fracturing in shale gas reservoir. Arabian Journal for Science and Engineering 4:1–16.
  • Ren, L., R. Lin, J. Zhao, V. Rasouli, J. Zhao, and H. Yang. 2018. Stimulated reservoir volume estimation for shale gas fracturing: Mechanism and modeling approach. Journal of Petroleum Science and Engineering 166:290–304. doi:10.1016/j.petrol.2018.03.041.
  • Ren, L., R. Lin, J. Z. Zhao, K. W. Yang, Y. Q. Hu, and X. J. Wang. 2015. Simultaneous hydraulic fracturing of ultra-low permeability sandstone reservoirs in China: Mechanism and its field test. Journal of Central South University 22 (4):1427–36. doi:10.1007/s11771-015-2660-1.
  • Ren, L., Y. Su, S. Zhan, Y. Hao, F. Meng, and G. Sheng. 2016. Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs. Journal of Natural Gas Science and Engineering 28:132–41. doi:10.1016/j.jngse.2015.11.042.
  • Sesetty, V., and A. Ghassemi. 2015. A numerical study of sequential and simultaneous hydraulic fracturing in single and multi-lateral horizontal wells. Journal of Petroleum Science and Engineering 132:65–76. doi:10.1016/j.petrol.2015.04.020.
  • Shahid, A. S. A., B. B. Wassing, P. A. Fokker, and F. Verga. 2015. Natural-fracture reactivation in shale gas reservoir and resulting microseismicity. Journal of Canadian Petroleum Technology 54 (06):450–59. doi:10.2118/178437-PA.
  • Sheng, G., Y. Su, W. Wang, F. Javadpour, and M. Tang. 2017. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs. Fractals 25 (04):1–13. doi:10.1142/S0218348X17400072.
  • Su, Y., Q. Zhang, W. Wang, and G. Sheng. 2015. Performance analysis of a composite dual-porosity model in multi-scale fractured shale reservoir. Journal of Natural Gas Science and Engineering 26:1107–18. doi:10.1016/j.jngse.2015.07.046.
  • Wang, S., H. Li, and D. Li. 2018a. Numerical simulation of hydraulic fracture propagation in coal seams with discontinuous natural fracture networks. Processes 6 (8):113. doi:10.3390/pr6080113.
  • Wang, S., J. Zhao, and Y. Li. 2014. Hydraulic fracturing simulation of complex fractures growth in naturally fractured shale gas reservoir. Arabian Journal for Science and Engineering 39 (10):7411–7419.
  • Wang, T., W. Hu, D. Elsworth, W. Zhou, W. Zhou, X. Zhao, and L. Zhao. 2017. The effect of natural fractures on hydraulic fracturing propagation in coal seams. Journal of Petroleum Science and Engineering 150:180–90. doi:10.1016/j.petrol.2016.12.009.
  • Wang, W., J. E. Olson, M. Prodanović, and R. A. Schultz. 2018b. Interaction between cemented natural fractures and hydraulic fractures assessed by experiments and numerical simulations. Journal of Petroleum Science and Engineering 167:506–16. doi:10.1016/j.petrol.2018.03.095.
  • Wang, Y., X. Li, R. Zhou, and C. Tang. 2016. Numerical evaluation of the shear stimulation effect in naturally fractured formations. Science China Earth Sciences 59 (2):371–83. doi:10.1007/s11430-015-5204-5.
  • Wang, S., Zhao, J., and Li, Y. 2014. Hydraulic fracturing simulation of complex fractures growth in naturally fractured shale gas reservoir. Arabian Journal for Science and Engineering 39 (10):7411–19. doi:10.1007/s13369-014-1221-5.
  • Warpinski, N. R., J. Du, and U. Zimmer. 2012. Measurements of hydraulic-fracture-induced seismicity in gas shales. SPE Production and Operations 27 (03):240–52. doi:10.2118/151597-PA.
  • Weng, X., O. Kresse, C. E. Cohen, R. Wu, and H. Gu. 2011. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation. SPE Production and Operations 26 (04):368–80. doi:10.2118/140253-PA.
  • Xie, J., H. Huang, H. Ma, B. Zeng, J. Tang, W. Yu, and K. Wu. 2018. Numerical investigation of effect of natural fractures on hydraulic-fracture propagation in unconventional reservoirs. Journal of Natural Gas Science and Engineering 54:143–53. doi:10.1016/j.jngse.2018.04.006.
  • Xu, J., C. Guo, M. Wei, and R. Jiang. 2015. Production performance analysis for composite shale gas reservoir considering multiple transport mechanisms. Journal of Natural Gas Science and Engineering 26:382–95. doi:10.1016/j.jngse.2015.05.033.
  • Xu, W., M. Thiercelin, U. Ganguly, Weng X, Gu H, Onda H, Sun J, Le Calvez J. 2010. Wiremesh: A novel shale fracturing simulator. Paper SPE 132218 presented at CPS/SPE international oil and gas conference and exhibitiion, Beijing, June 8–10.
  • Xu, W., M. J. Thiercelin, and I. C. Walton. 2009. Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model. Paper SPE 124697-MS presented at the SPE annual technical conference and exhibition, New Orleans, October 4–7.
  • Zeng, H., D. Fan, J. Yao, and H. Sun. 2015. Pressure and rate transient analysis of composite shale gas reservoirs considering multiple mechanisms. Journal of Natural Gas Science and Engineering 27:914–25. doi:10.1016/j.jngse.2015.09.039.
  • Zhang, Z., X. Li, and J. He. 2016. Numerical study on the permeability of the hydraulic-stimulated fracture network in naturally-fractured shale gas reservoirs. Water 8 (9):1–14. doi:10.3390/w8090393.
  • Zhang, Z., X. Li, J. He, Y. Wu, and G. Li. 2017. Numerical study on the propagation of tensile and shear fracture network in naturally fractured shale reservoirs. Journal of Natural Gas Science and Engineering 37:1–14. doi:10.1016/j.jngse.2016.11.031.
  • Zhang, Z., X. Li, W. Yuan, J. He, G. Li, and Y. Wu. 2015. Numerical analysis on the optimization of hydraulic fracture networks. Energies 8 (10):12061–79. doi:10.3390/en81012061.
  • Zhao, Z., X. Li, J. He, T. Mao, G. Li, and B. Zheng. 2018. Investigation of fracture propagation characteristics caused by hydraulic fracturing in naturally fractured continental shale. Journal of Natural Gas Science and Engineering 53:276–83. doi:10.1016/j.jngse.2018.02.022.
  • Zhou, J., H. Huang, and M. Deo. 2016. Numerical study of critical role of rock heterogeneity in hydraulic fracture propagation. Paper ARMA-2016-682 presented at the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston, Texas, June 26–29.
  • Zou, J., W. Chen, and Y. Y. Jiao. 2018. Numerical simulation of hydraulic fracture initialization and deflection in anisotropic unconventional gas reservoirs using XFEM. Journal of Natural Gas Science and Engineering 55:466–75. doi:10.1016/j.jngse.2018.04.033.
  • Zou, Y., S. Zhang, X. Ma, T. Zhou, and B. Zeng. 2016. Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. Journal of Structural Geology 84:1–13. doi:10.1016/j.jsg.2016.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.