561
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Exergy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer

ORCID Icon, ORCID Icon, , &
Pages 8978-8994 | Received 12 Jun 2019, Accepted 24 Jul 2019, Published online: 19 Oct 2019

References

  • Abdel-Shafy, H. I., and M. S. M. Mansour. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27:1275–90. doi:10.1016/j.ejpe.2018.07.003.
  • Aghbashlo, M., M. H. kianmehr, and H. Samimi-Akhijahani. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management 49:2865–71. doi:10.1016/j.enconman.2008.03.009.
  • Akpinar, E. K., Y. Bicer, and C. Yildiz. 2003. Thin layer drying of red pepper. Journal of Food Engineering 59:99–104. doi:10.1016/S0260-8774(02)00425-9.
  • Arepally, D., S. Ravula, G. K. Malik, and V. Kamidi. 2017. Mathematical modelling, energy and exergy analysis of tomato slices in a mixed mode natural convection solar dryer. Chemical Science International Journal 20:1–11. doi:10.9734/CSJI.
  • Arul, G. P., S. Shanmugam, A. Veerappan, and P. Kumar. 2019. Perfromance analysis of double-pass-oscilating bed solar dryer for drying of non-parboiled paddy grains. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41:418–26. doi:10.1080/15567036.2018.1520326.
  • Babalis, S. J., E. Papanicolaou, N. Kyriakis, and V. G. Belessiotis. 2006. Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). Journal of Food Engineering 75:205–14. doi:10.1016/j.jfoodeng.2005.04.008.
  • Babu, A. K., G. Kumaresan, V. A. Aroul Raj, and R. Velraj. 2019. CFD studies on different configurations of drying chamber for thin-layer drying of leaves. Energ Source Part A. doi:10.1080/15567036.2019.1607935.
  • Badaoui, O., S. Hanini, A. Djebli, B. Haddad, and A. Benhamou. 2019. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy 133:144–55. doi:10.1016/j.renene.2018.10.020.
  • Badaoui, O., S. Hanini, A. Djebli, H. Brahim, and A. Benhamou. 2018. Experimental and modeling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy. doi:10.1016/j.renene.2018.10.020.
  • Banerjee, J., R. Singh, R. Vijayaraghavan, D. MacFarlane, A. F. Patti, and A. Arora. 2017. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry 225:10–22. doi:10.1016/j.foodchem.2016.12.093.
  • Chauhan, P. S., and A. Kumar. 2016. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode. Energy Reports 2:107–16. doi:10.1016/j.egyr.2016.05.004.
  • Chawla, C., D. Kaur, D. P. S. Oberoi, and D. S. Sogi. 2008. Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp. Drying Technology 26:1257–64. doi:10.1080/07373930802307225.
  • Coskum, S., I. Doymaz, C. Tunckal, and S. Erdogan. 2016. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer 53:1863–71. doi:10.1007/s00231-016-1946-7.
  • Crank, J. 1975. The Mathematics of diffusion. doi:10.1016/0306-4549(77)90072-X.
  • Demiray, E., and Y. Tulek. 2014. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer 50:779–86. doi:10.1007/s00231-013-1286-9.
  • Doymaz, İ. 2004. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering 61:359–64. doi:10.1016/S0260-8774(03)00142-0.
  • Ethmane Kane, C. S., A. Jamali, M. Kouhila, A. Mimet, and M. Ahachad. 2008. Single-layer drying behavior of Mexican tea leaves (Chenopodium ambrosioides) in a convective solar dryer and mathematical modeling. Chemical Engineering Communications 195:787–802. doi:10.1080/00986440701691095.
  • Ferreira, A. G., C. B. Maia, F. B. Cortez, and R. M. Valle. 2008. Technical feasibility assessment of a solar chimney for food drying. Solar Energy 82:198–205. doi:10.1016/j.solener.2007.08.002.
  • Goyal, R. K., A. R. P. Kingsly, M. R. Manikantan, and S. M. Ilyas. 2007. Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. Journal of Food Engineering 79:176–80. doi:10.1016/j.jfoodeng.2006.01.041.
  • Holman, J. P. 2011. Experimental methods for engineers. 8th ed. New York: McGraw-Hill Companies, Inc.
  • Jeyaprakash, S., D. C. Frank, and R. H. Driscoll. 2016. Influence of heat pump drying on tomato flavor. Drying Technology 34:1709–18. doi:10.1080/07373937.2016.1174937.
  • Keey, R. B. 1972. Drying. Principles and Practice, 1st ed. Pergamon press. doi:10.1016/B978-0-444-99713-5.50001-4.
  • Khattab, N. M. 1996. Optimization of the drying process in batch dryers. Energy Sources 18:269–81. doi:10.1080/00908319608908766.
  • Khattab, N. M., and M. T. S. Badawy. 1996. Evaluation of different locations of thermal storage in solar drying system. Energy Sources 18:823–31. doi:10.1080/00908319608908814.
  • Koukouch, A., A. Idlimam, M. Asbik, B. Sarh, B. Izrar, S. Bostyn, A. Bah, O. Ansari, O. Zegaoui, and A. Amine. 2017. Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste. Renewable Energy 101:565–74. doi:10.1016/j.renene.2016.09.006.
  • Kowalska, H., K. Czajkowska, J. Cichowska, and A. Lenart. 2017. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology 67:150–59. doi:10.1016/j.tifs.2017.06.016.
  • Lam, S. S., R. K. Liew, X. Y. Lim, F. N. Ani, and A. Jusoh. 2016. Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration & Biodegradation 113:325–33. doi:10.1016/j.ibiod.2016.02.021.
  • Liu, Q., and F. W. Bakker-Arkema. 1997. Stochastic modelling of grain drying: Part 2. Model development. Journal of Agricultural Engineering Research 66:275–80. doi:10.1006/jaer.1996.0145.
  • Lokeswaran, S., and M. Eswaramoorthy. 2013. Experimantal studies on solar drier system with a biomass back-up heater. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35:467–75. doi:10.1080/15567036.2010.511434.
  • Madamba, P. S., R. H. Driscoll, and K. A. Buckle. 1996. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering 29:75–97. doi:10.1016/0260-8774(95)00062-3.
  • Midilli, A., H. Kucuk, and Z. Yapar. 2002. A new model for single-layer drying. Drying Technology 20:1503–13. doi:10.1081/DRT-120005864.
  • Moult, J. A., S. R. Allan, C. N. Hewitt, and M. Berners-Lee. 2018. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 77:50–58. doi:10.1016/j.foodpol.2018.04.003.
  • Onwude, D. I., N. Hashim, R. B. Janius, N. M. Nawi, and K. Abdan. 2016. Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 15:599–618. doi:10.1111/1541-4337.12196.
  • Panchariya, P. C., D. Popovic, and A. L. Sharma. 2002. Thin-layer modelling of black tea drying process. Journal of Food Engineering 52:349–57. doi:10.1016/S0260-8774(01)00126-1.
  • Pravin Kumar, S. A., R. Nagarajan, K. Midhun Prasad, B. Anand, and S. Muruavelh. 2019. Thermo-gravimetric study and kinetics of banana peel pyrolysis: A comparisson of ‘model-free’ methods. Biofuels accepted doi:10.1080/17597269.2019.1647375.
  • Rajkumar, P., S. Kulanthaisami, G. S. V. Raghavan, Y. Gariepy, and V. Orsat. 2007. Drying kinetics of tomato slices in vacuum assisted solar and open sun drying methods. Drying Technology 25:1349–57. doi:10.1080/07373930701438931.
  • Reyes, A., A. Mahn A, P. Huenulaf, and T. Gonzalez. 2014. Tomato Dehydration in a Hybrid Solar Dryer. Chemical Engineering & Process Technology Journal 5 (4):196–203. doi:10.4172/2157-7048.1000196.
  • Ringeisen, B., D. M. Barrett, and P. Stroeve. 2014. Concentrated solar drying of tomatoes. Energy for Sustainable Development 19:47–55. doi:10.1016/j.esd.2013.11.006.
  • Sanmartin, G., J. Buj, J. M. Cortes, L. Bossa, and J. Puello. 2017. Design of an apparatus for solar drying of farm products. Chemical Engineering Transactions 57:235–40. doi:10.3303/CET1757040.
  • Shanmugam, S., P. Kumar, and A. Veerappan. 2014. Thermal performance of solar dryer with oscillating bed for drying of non-paraboiled paddy grains. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:1877–85. doi:10.1080/15567036.2011.557686.
  • Singh, P., V. Shrivastava, and A. Kumar. 2018. Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews 82:3250–62. doi:10.1016/j.rser.2017.10.020.
  • Taheri, K., R. Gadow, and A. Killinger. 2014. Exergy analysis as a developed concept of energy efficiency optimized processes: The case of thermal spray processes. Procedia CIRP 17:511–16. doi:10.1016/j.procir.2014.01.060.
  • Toğrul, İ. T., and D. Pehlivan. 2004. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering 65:413–25. doi:10.1016/j.jfoodeng.2004.02.001.
  • Tunde-Akintunde, T. Y. 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy 36:2139–45. doi:10.1016/j.renene.2011.01.017.
  • Verma, L. R., R. A. Bucklin, J. B. Endan, and F. T. Wratten. 1985. Effects of drying air parameters on rice drying models. Transactions of the American Society of Agricultural Engineers 28:296–301. doi:10.13031/2013.32245.
  • Zogzas, N. P., Z. B. Maroulis, and D. Marinos-Kouris. 2007. Drying technology : An international journal moisture diffusivity data compilation in foodstuffs. Drying Technology 37–41. doi:10.1080/07373930701438592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.