324
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Characterization of corn oil biodiesel and its application in diesel engine

, &
Pages 9498-9512 | Received 10 Dec 2018, Accepted 13 Aug 2019, Published online: 21 Oct 2019

References

  • Asokan, M. A., R. Vijayan, S. S. Prabu, and N. Venkatesan. 2016. Experimental studies on the combustion characteristics and performance of a DI diesel engine using kapok oil methyl ester/diesel blends. International Journal of Oil, Gas and Coal Technology 12 (1):105–19. doi:10.1504/IJOGCT.2016.075843.
  • Azargohar, R., K. L. Jacobson, E. E. Powell, and A. K. Dalai. 2013. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. Journal of Analytical and Applied Pyrolysis 104:330–40. doi:10.1016/j.jaap.2013.06.016.
  • Bordoloi, N., R. Narzari, R. S. Chutia, T. Bhaskar, and R. Kataki. 2015. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology 178:83–89. doi:10.1016/j.biortech.2014.10.079.
  • Carrillo, F., X. Colom, J. J. Suñol, and J. Saurina. 2004. Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal 40 (9):2229–34. doi:10.1016/j.eurpolymj.2004.05.003.
  • Chauhan, B. S., N. Kumar, and H. M. Cho. 2012. A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy 37 (1):616–22. doi:10.1016/j.energy.2011.10.043.
  • Chen, W., S. Shi, J. Zhang, M. Chen, and X. Zhou. 2016. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Conversion and Management 112:41–48. doi:10.1016/j.enconman.2016.01.005.
  • Dahiya, A. P., A. K. Berwal, and B. K. Khan. 2015. Performance evaluation of CI engine with methyl ester of karanja oil. International Journal of Engineering Technology Management and Applied Sciences 3 (12):44–55.
  • Demirbas, A. 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management 49 (8):2106–16. doi:10.1016/j.enconman.2008.02.020.
  • Demirbas, A. 2010. Biodiesel for future transportation energy needs. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32 (16):1490–508. doi:10.1080/15567030903078335.
  • Dincer, K. 2008. Lower emissions from biodiesel combustion. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 30 (10):963–68. doi:10.1080/15567030601082753.
  • Fattah, I. M., H. H. Masjuki, M. A. Kalam, M. Mofijur, and M. J. Abedin. 2014. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Conversion and Management 79:265–72. doi:10.1016/j.enconman.2013.12.024.
  • Gebremariam, S. N., and J. M. Marchetti. 2018. Economics of biodiesel production. Energy Conversion and Management 168:74–84. doi:10.1016/j.enconman.2018.05.002.
  • Graboski, M. S., and R. L. McCormick. 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science 24 (2):125–64. doi:10.1016/S0360-1285(97)00034-8.
  • Griffin, M. A., D. J. Spakowicz, T. A. Gianoulis, and S. A. Strobel. 2010. Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156 (12):3814–29. doi:10.1099/mic.0.041327-0.
  • Gumus, M., and S. Kasifoglu. 2010. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass and Bioenergy 34 (1):134–39. doi:10.1016/j.biombioe.2009.10.010.
  • He, H., S. Sun, T. Wang, and S. Zhu. 2007. Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. Journal of the American Oil Chemists’ Society 84 (4):399–404. doi:10.1007/s11746-007-1042-8.
  • Ileri, E., and G. Koçar. 2013. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–Diesel blend. Energy Conversion and Management 76:145–54. doi:10.1016/j.enconman.2013.07.037.
  • Islam, M. N., R. Zailani, and F. N. Ani. 1999. Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renewable Energy 17 (1):73–84. doi:10.1016/S0960-1481(98)00112-8.
  • Jeong, G. T., H. S. Yang, and D. H. Park. 2009. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource Technology 100 (1):25–30. doi:10.1016/j.biortech.2008.05.011.
  • Khalil, I., A. R. A. Aziz, S. Yusup, M. Heikal, and M. El-Adawy. 2017. Response surface methodology for the optimization of the production of rubber seed/palm oil biodiesel, IDI diesel engine performance, and emissions. Biomass Conversion and Biorefinery 7 (1):37–49. doi:10.1007/s13399-016-0221-y.
  • Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science 2 (7):759–66. doi:10.1039/B903941D.
  • Knothe, G., and L. F. Razon. 2017. Biodiesel fuels. Progress in Energy and Combustion Science 58:36–59. doi:10.1016/j.pecs.2016.08.001.
  • Lapuerta, M., O. Armas, and J. M. Herreros. 2008. Emissions from a diesel–Bioethanol blend in an automotive diesel engine. Fuel 87 (1):25–31. doi:10.1016/j.fuel.2007.04.007.
  • Lee, D., Y. Jho, and C. S. Lee. 2013. Effects of soybean and canola oil–Based biodiesel blends on spray, combustion, and emission characteristics in a diesel engine. Journal of Energy Engineering 140 (3):A4014012. doi:10.1061/(ASCE)EY.1943-7897.0000160.
  • Liu, H., X. Bi, M. Huo, C. F. F. Lee, and M. Yao. 2012. Soot emissions of various oxygenated biofuels in conventional diesel combustion and low-temperature combustion conditions. Energy & Fuels 26 (3):1900–11. doi:10.1021/ef201720d.
  • Mahamuni, N. N., and Y. G. Adewuyi. 2009. Fourier transform infrared spectroscopy (FTIR) method to monitor soy biodiesel and soybean oil in transesterification reactions, petrodiesel− biodiesel blends, and blend adulteration with soy oil. Energy & Fuels 23 (7):3773–82. doi:10.1021/ef900130m.
  • Mahmudul, H. M., F. Y. Hagos, R. Mamat, A. Abdul Adam, W. F. W. Ishak, and R. Alenezi. 2017. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–A review. Renewable and Sustainable Energy Reviews 72:497–509. doi:10.1016/j.rser.2017.01.001.
  • Meher, L. C., D. V. Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews 10 (3):248–68. doi:10.1016/j.rser.2004.09.002.
  • Mokhlisse, A., and M. B. Chanâa. 1999. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. Journal of Analytical and Applied Pyrolysis 48 (2):65–76. doi:10.1016/S0165-2370(98)00108-9.
  • Monteiro, M. R., A. R. P. Ambrozin, L. M. Liao, and A. G. Ferreira. 2009. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel 88 (4):691–96. doi:10.1016/j.fuel.2008.10.010.
  • Mosarof, M. H., M. A. Kalam, H. H. Masjuki, A. Alabdulkarem, A. M. Ashraful, A. Arslan, H. K. Rashedul, and I. M. Monirul. 2016. Optimization of performance, emission, friction and wear characteristics of palm and Calophyllum inophyllum biodiesel blends. Energy Conversion and Management 118:119–34. doi:10.1016/j.enconman.2016.03.081.
  • Muralidharan, K., and D. Vasudevan. 2011. Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Applied Energy 88 (11):3959–68. doi:10.1016/j.apenergy.2011.04.014.
  • Naik, C. V., C. K. Westbrook, O. Herbinet, W. J. Pitz, and M. Mehl. 2011. Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate. Proceedings of the Combustion Institute 33 (1):383–89. doi:10.1016/j.proci.2010.05.007.
  • Nayak, S. K., and B. P. Pattanaik. 2014. Experimental investigation on performance and emission characteristics of a diesel engine fuelled with mahua biodiesel using additive. Energy Procedia 54:569–79. doi:10.1016/j.egypro.2014.07.298.
  • Özcanlı, M., A. Keskin, and K. Aydın. 2011. Biodiesel production from terebinth (Pistacia terebinthus) oil and its usage in diesel engine. International Journal of Green Energy 8 (5):518–28. doi:10.1080/15435075.2011.588766.
  • Pandian, A. K., D. B. Munuswamy, S. Radhakrishanan, Y. Devarajan, R. B. B. Ramakrishnan, and B. Nagappan. 2018. Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. Petroleum Science 15 (1):176–84. doi:10.1007/s12182-017-0208-8.
  • Portela, N. A., E. C. Oliveira, A. C. Neto, R. R. Rodrigues, S. R. Silva, E. V. Castro, and P. R. Filgueiras. 2016. Quantification of biodiesel in petroleum diesel by 1H NMR: Evaluation of univariate and multivariate approaches. Fuel 166:12–18. doi:10.1016/j.fuel.2015.10.091.
  • Prabu, S. S., M. A. Asokan, R. Roy, S. Francis, and M. K. Sreelekh. 2017. Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio- diesel/diesel blends with additives. Energy 122:638–48. doi:10.1016/j.energy.2017.01.119.
  • Qasim, M., T. M. Ansari, and M. Hussain. 2017. Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of pakistani waste canola and waste transformer oils. Energies 10 (7):1023. doi:10.3390/en10071023.
  • Ramadhas, A. S., S. Jayaraj, and C. Muraleedharan. 2005. Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renewable Energy 30 (5):795–803. doi:10.1016/j.renene.2004.07.002.
  • Ryu, K. 2010. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresource Technology 101 (1):S78–S82. doi:10.1016/j.biortech.2009.05.034.
  • Saber, M., B. Nakhshiniev, and K. Yoshikawa. 2016. A review of production and upgrading of algal bio-oil. Renewable and Sustainable Energy Reviews 58:918–30. doi:10.1016/j.rser.2015.12.342.
  • Schifter, I., L. Diaz, R. Rodriguez, J. P. Gómez, and U. Gonzalez. 2011. Combustion and emissions behavior for ethanol–Gasoline blends in a single cylinder engine. Fuel 90 (12):3586–92. doi:10.1016/j.fuel.2011.01.034.
  • Schuchardt, U., R. Sercheli, and R. M. Vargas. 1998. Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society 9 (3):199–210. doi:10.1590/S0103-50531998000300002.
  • Siatis, N. G., A. C. Kimbaris, C. S. Pappas, P. A. Tarantilis, and M. G. Polissiou. 2006. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. Journal of the American Oil Chemists’ Society 83 (1):53–57. doi:10.1007/s11746-006-1175-1.
  • Spakowicz, D. J., and S. A. Strobel. 2015. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: Bioengineering potential. Applied Microbiology and Biotechnology 99 (12):4943–51. doi:10.1007/s00253-015-6641-y.
  • Subramani, L., M. Parthasarathy, D. Balasubramanian, and K. Ramalingam. 2018. Novel Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine. Renewable Energy 125:568–77. doi:10.1016/j.renene.2018.02.134.
  • Tsolakis, A., A. Megaritis, and M. L. Wyszynski. 2003. Application of exhaust gas fuel reforming in compression ignition engines fueled by diesel and biodiesel fuel mixtures. Energy & Fuels 17 (6):1464–73. doi:10.1021/ef0300693.
  • Van Gerpen, J. 2005. Biodiesel processing and production. Fuel Processing Technology 86 (10):1097–107. doi:10.1016/j.fuproc.2004.11.005.
  • Varma, A. K., and P. Mondal. 2017. Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products 95:704–17. doi:10.1016/j.indcrop.2016.11.039.
  • Verma, P., and V. M. Singh. 2014. Assessment of diesel engine performance using cotton seed biodiesel. Integrated Research Advances 1 (1):1–4.
  • Wahab, M. A., S. Jellali, and N. Jedidi. 2010. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology 101 (14):5070–75. doi:10.1016/j.biortech.2010.01.121.
  • Wei, L., C. S. Cheung, and Z. Ning. 2017. Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine. Energy 127:175–85. doi:10.1016/j.energy.2017.03.117.
  • Xiao, M., H. Liu, X. Bi, H. Wang, and C. F. F. Lee. 2014. Experimental and numerical investigation on soot behavior of soybean biodiesel under ambient oxygen dilution in conventional and low-temperature flames. Energy & Fuels 28 (4):2663–76. doi:10.1021/ef5002315.
  • Yilmaz, N., F. M. Vigil, K. Benalil, S. M. Davis, and A. Calva. 2014. Effect of biodiesel–Butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel 135:46–50. doi:10.1016/j.fuel.2014.06.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.