359
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical recovery of hydrogen and elemental sulfur from hydrogen sulfide gas by two-cell system

, , , , , & show all
Pages 9602-9615 | Received 27 Dec 2018, Accepted 21 Sep 2019, Published online: 11 Nov 2019

References

  • Ahn, W., K. B. Kim, K. N. Jung, K.-H. Shin, and C. Jin. 2012. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. Journal of Power Sources 202:394–99. doi:10.1016/j.jpowsour.2011.11.074.
  • Anani, A. A., Z. Mao, R. E. White, S. Srinivasan, and A. J. Appleby. 1990. Electrochemical production of hydrogen and sulfur by low-temperature decomposition of hydrogen sulfide in an aqueous alkaline solution. Journal of the Electrochemical Society 137:2703–09. doi:10.1149/1.2087021.
  • Beavon, D. K., and R. N. Fleck. 1975. Beavon sulfur removal process for claus plant tail gas. Sulfur Removal and Recovery 1:93–99. April.
  • Boudries, R. 2014. Hydrogen as a fuel in the transport sector in algeria. International Journal of Hydrogen Energy 39:15215–15213. doi:10.1016/j.ijhydene.2014.06.014.
  • De Crisci, A. G., A. Moniri, and Y. Xu. 2019. Hydrogen from hydrogen sulfide: Towards a more sustainable hydrogen economy. International Journal of Hydrogen Energy 44 (3):1299–327. doi:10.1016/j.ijhydene.2018.10.035.
  • Dell, R. M., P. T. Moseley, and D. A. J. Rand. 2014. Hydrogen, fuel cells and fuel cell vehicles towards sustainable road transport, 260–95. Elsevier.
  • Eow, J. S. 2002. Recovery of sulfur from sour acid gas: A review of the technology. Environmental Progress 21:143–62. doi:10.1002/(ISSN)1547-5921.
  • Fletcher, E. A., J. E. Noring, and J. P. Murray. 1984. Hydrogen sulfide as a source of hydrogen. International Journal of Hydrogen Energy 9 (7):587–93. doi:10.1016/0360-3199(84)90238-6.
  • Hotza, D., and J. C. D. Da Costa. 2008. Fuel cells development and hydrogen production from renewable resources in Brazil. International Journal of Hydrogen Energy 33:4915–35. doi:10.1016/j.ijhydene.2008.06.028.
  • Huang, H., J. Shang, Y. Yu, and K. H. Chung. 2019. Recovery of hydrogen from hydrogen sulfide by indirect electrolysis process. International Journal of Hydrogen Energy 44 (11):5108–13. doi:10.1016/j.ijhydene.2018.11.010.
  • Huang, H., Y. Yu, and K. H. Chung. 2009. Recovery of hydrogen and sulfur by indirect electrolysis of hydrogen sulfide. Energy & Fuels : an American Chemical Society Journal 23 (9):4420–25. doi:10.1021/ef900424a.
  • Jain, P., S. Srikanth, M. Kumar, P. M. Sarma, M. P. Singh, and B. Lal. 2019. Electrochemical sulfur production from treating petroleum produced water. Journal of Water Process Engineering 28:190–94. doi:10.1016/j.jwpe.2019.01.020.
  • Kasai, S. 2014. Hydrogen electrical energy storage by high-temperature steam electrolysis for next- millennium energy security. International Journal of Hydrogen Energy 39:21358–70. doi:10.1016/j.ijhydene.2014.09.114.
  • Lu, J., A. Zahedi, C. Yang, M. Wang, and B. Peng. 2013. Building the hydrogen economy in China: Drivers, resources and technologies. Renewable and Sustainable Energy Reviews 23:543–56. doi:10.1016/j.rser.2013.02.042.
  • Ni, G., P. Harnawan, L. Seidel, A. Ter Heijne, T. Sleutels, C. J. Buisman, and M. Dopson. 2019. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell. Journal of Hazardous Materials 363:197–204. doi:10.1016/j.jhazmat.2018.09.049.
  • Nygren, K., R. Atanasoski, W. H. Smyrl, and E. A. Fletcher. 1989. Hydrogen and sulfur from hydrogen sulfide—V. Anodic oxidation of sulfur on activated glassy carbon. Energy 14 (6):323–31. doi:10.1016/0360-5442(89)90013-3.
  • Petrov, K., S. Z. Baykara, D. Ebrasu, M. Gulin, and A. Veziroglu. 2011. An assessment of electrolytic hydrogen production from H2S in Black Sea waters. International Journal of Hydrogen Energy 36:8936–42. doi:10.1016/j.ijhydene.2011.04.022.
  • Pieplu, A., O. Saur, and J. C. Lavxlley. 1998. Claus catalysis and H2S selective oxidation, catalysis reviews. Science Engineering 40:409–50.
  • Pikaar, I., R. A. Rozendal, Z. Yuan, J. Keller, and K. Rabaey. 2011. Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Research 45:5381–88. doi:10.1016/j.watres.2011.07.033.
  • Schoofs, R. J. Clasus process improvement. United States patent 4508699, 1985.
  • Selvaraj, H., K. Chandrasekaran, and R. Gopalkrishnan. 2016. Recovery of solid sulfur from hydrogen sulfide gas by electrochemical membrane cell. RSC Advances 6 (5):3735–41. doi:10.1039/C5RA19116E.
  • Waterston, K., D. Bejan, and N. J. Bunce. 2007. Electrochemical oxidation of sulfide ion at a boron-doped diamond anode. Journal of Applied Electrochemistry 37 (3):367–73. doi:10.1007/s10800-006-9267-z.
  • Zhang, J., T. Zhang, and F. Sun. 2017. Research progress on hydrogen and sulfur production from direct decomposition of hydrogen sulfide. Chemical Industrial Engingeering Progrom 36 (4):1448–49.
  • Zhao, Y., Z. Liu, Z. Jia, and X. Xing. 2007. Elemental sulfur recovery through H2 regeneration of a SO2-adsorbed CuO/Al2O3. Ndustrial and Engineering Chemistry Research 46:2661–64. doi:10.1021/ie0610041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.