515
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Wave height prediction with single input parameter by using regression methods

& ORCID Icon
Pages 2972-2989 | Received 18 Nov 2019, Accepted 18 Feb 2020, Published online: 02 Mar 2020

References

  • Asoodeh, M., S. R. Shadizadeh, and G. Zargar. 2015. The estimation of stoneley wave velocity from conventional well log data: Using an integration of artificial neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (3):309–17. doi:10.1080/15567036.2011.585383.
  • Berbić, J., E. Ocvirk, D. Carević, and G. Lončar. 2017. Application of neural networks and support vector machine for significant wave height prediction. Oceanologia 59 (3):331–49. doi:10.1016/j.oceano.2017.03.007.
  • Castro, A., R. Carballo, G. Iglesias, and J. R. Rabuñal. 2014. Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing 23:194–201. doi:10.1016/j.asoc.2014.06.031.
  • Cherkassky, V., and Y. Ma. 2004. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (1):113–26. doi:10.1016/S0893-6080(03)00169-2.
  • Cornejo-Bueno, L., J. N. Borge, E. Alexandre, K. Hessner, and S. Salcedo-Sanz. 2016a. Accurate estimation of significant wave height with support vector regression algorithms and marine radar images. Coastal Engineering 114:233–43. doi:10.1016/j.coastaleng.2016.04.007.
  • Cornejo-Bueno, L., J. C. Nieto-Borge, P. García-Díaz, G. Rodríguez, and S. Salcedo-Sanz. 2016b. Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm–extreme learning machine approach. Renewable Energy 97:380–89. doi:10.1016/j.renene.2016.05.094.
  • Cornejo-Bueno, L., P. Rodríguez-Mier, M. Mucientes, J. C. Nieto-Borge, and S. Salcedo-Sanz. 2018. Significant wave height and energy flux estimation with a genetic fuzzy system for regression. Ocean Engineering 160:33–44. doi:10.1016/j.oceaneng.2018.04.063.
  • De Domenico, M., M. A. Ghorbani, O. Makarynskyy, D. Makarynska, and H. Asadi. 2013. Chaos and reproduction in sea level. Applied Mathematical Modelling 37 (6):3687–97. doi:10.1016/j.apm.2012.08.018.
  • Desouky, M. A., and O. Abdelkhalik. 2019. Wave prediction using wave rider position measurements and NARX network in wave energy conversion. Applied Ocean Research 82:10–21. doi:10.1016/j.apor.2018.10.016.
  • Duan, W. Y., Y. Han, L. M. Huang, B. B. Zhao, and M. H. Wang. 2016. A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Engineering 124:54–73. doi:10.1016/j.oceaneng.2016.05.049.
  • Etemad-Shahidi, A., and J. Mahjoobi. 2009. Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering 36 (15–16):1175–81. doi:10.1016/j.oceaneng.2009.08.008.
  • Fumo, N., and M. R. Biswas. 2015. Regression analysis for prediction of residential energy consumption. Renewable and Sustainable Energy Reviews 47:332–43. doi:10.1016/j.rser.2015.03.035.
  • Ghorbani, M. A., H. Asadi, O. Makarynskyy, D. Makarynska, and Z. M. Yaseen. 2017. Augmented chaos-multiple linear regression approach for prediction of wave parameters. Engineering Science and Technology, an International Journal 20 (3):1180–91. doi:10.1016/j.jestch.2016.12.001.
  • Ghorbani, M. A., R. C. Deo, V. Karimi, M. H. Kashani, and S. Ghorbani. 2019. Design and implementation of a hybrid MLP-GSA model with multi-layer perceptron-gravitational search algorithm for monthly lake water level forecasting. Stochastic Environmental Research and Risk Assessment 33 (1):125–47. doi:10.1007/s00477-018-1630-1.
  • Günaydın, K. 2008. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Engineering 35 (14–15):1406–15. doi:10.1016/j.oceaneng.2008.07.008.
  • Kang, H., I. Chun, and B. Oh. 2020. New procedure for determining equivalent deep-water wave height and design wave heights under irregular wave conditions. International Journal of Naval Architecture and Ocean Engineering 12:168–77. doi:10.1016/j.ijnaoe.2019.09.002.
  • Khatibi, R., M. A. Ghorbani, M. T. Aalami, K. Kocak, O. Makarynskyy, D. Makarynska, and M. Aalinezhad. 2011. Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: A chaos theory perspective. Ocean Dynamics 61 (11):1797–807. doi:10.1007/s10236-011-0466-8.
  • Kumar, N. K., R. Savitha, and A. Al Mamun. 2017. Ocean wave height prediction using ensemble of extreme learning machine. Neurocomputing 277:12–20. doi:10.1016/j.neucom.2017.03.092.
  • Labani, M. M., and M. Sabzekar. 2019. Estimation of shear and Stoneley wave velocities from conventional well data using different intelligent systems and the concept of committee machine: An example from South Pars gas field, Persian Gulf. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2019.1666936.
  • Londhe, S. N., S. Shah, P. R. Dixit, T. B. Nair, P. Sirisha, and R. Jain. 2016. A coupled numerical and artificial neural network model for improving location specific wave forecast. Applied Ocean Research 59:483–91. doi:10.1016/j.apor.2016.07.004.
  • Mahjoobi, J., and E. A. Mosabbeb. 2009. Prediction of significant wave height using regressive support vector machines. Ocean Engineering 36 (5):339–47. doi:10.1016/j.oceaneng.2009.01.001.
  • Malekmohamadi, I., M. R. Bazargan-Lari, R. Kerachian, M. R. Nikoo, and M. Fallahnia. 2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Engineering 38 (2–3):487–97. doi:10.1016/j.oceaneng.2010.11.020.
  • Meshram, S. G., M. A. Ghorbani, S. Shamshirband, V. Karimi, and C. Meshram. 2019. River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Computing 23 (20):10429–38. doi:10.1007/s00500-018-3598-7.
  • Robnik-Šikonja, M., and I. Kononenko. 2003. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53 (1–2):23–69. doi:10.1023/A:1025667309714.
  • Sadeghifar, T., M. Nouri Motlagh, M. Torabi Azad, and M. Mohammad Mahdizadeh. 2017. Coastal wave height prediction using Recurrent Neural Networks (RNNs) in the south Caspian Sea. Marine Geodesy 40 (6):454–65. doi:10.1080/01490419.2017.1359220.
  • Salcedo-Sanz, S., J. N. Borge, L. Carro-Calvo, L. Cuadra, K. Hessner, and E. Alexandre. 2015. Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface. Ocean Engineering 101:244–53. doi:10.1016/j.oceaneng.2015.04.041.
  • Savitha, R., and A. Al Mamun. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering 129:605–12. doi:10.1016/j.oceaneng.2016.10.033.
  • Schulz, E., M. Speekenbrink, and A. Krause. 2018. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology 85:1–16. doi:10.1016/j.jmp.2018.03.001.
  • Singh, R., R. K. Umrao, M. Ahmad, M. K. Ansari, L. K. Sharma, and T. N. Singh. 2017. Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement 99:108–19. doi:10.1016/j.measurement.2016.12.023.
  • Ti, Z., M. Zhang, L. Wu, S. Qin, K. Wei, and Y. Li. 2018. Estimation of the significant wave height in the nearshore using prediction equations based on the response surface method. Ocean Engineering 153:143–53. doi:10.1016/j.oceaneng.2018.01.081.
  • Urbanowicz, R. J., M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore. 2018. Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics 85:189–203. doi:10.1016/j.jbi.2018.07.014.
  • Yang, B. S., M. S. Oh, and A. C. C. Tan. 2008. Machine condition prognosis based on regression trees and one-step-ahead prediction. Mechanical Systems and Signal Processing 22 (5):1179–93. doi:10.1016/j.ymssp.2007.11.012.
  • Yilmaz, I., and O. Kaynar. 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications 38 (5):5958–66. doi:10.1016/j.eswa.2010.11.027.
  • Yoon, J., W. R. Zame, and M. van der Schaar. 2018. ToPs: Ensemble learning with trees of predictors. IEEE Transactions on Signal Processing 66 (8):2141–52. doi:10.1109/TSP.78.
  • Zanaganeh, M., S. J. Mousavi, and A. F. E. Shahidi. 2009. A hybrid genetic algorithm–adaptive network-based fuzzy inference system in prediction of wave parameters. Engineering Applications of Artificial Intelligence 22 (8):1194–202. doi:10.1016/j.engappai.2009.04.009.
  • Zoveidavianpoor, M. 2014. A comparative study of artificial neural network and adaptive neurofuzzy inference system for prediction of compressional wave velocity. Neural Computing and Applications 25 (5):1169–76. doi:10.1007/s00521-014-1604-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.