520
Views
25
CrossRef citations to date
0
Altmetric
Research Article

An extreme learning machine based very short-term wind power forecasting method for complex terrain

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2715-2730 | Received 31 Oct 2019, Accepted 08 Apr 2020, Published online: 16 Apr 2020

References

  • Abdoos, A. A. 2016. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 203:111–20. doi:10.1016/j.neucom.2016.03.054.
  • Abolhosseini, S., and A. Heshmati. 2014. The main support mechanisms to finance renewable energy development. Renewable and Sustainable Energy Reviews 40:876–85. doi:10.1016/j.rser.2014.08.013.
  • An, X., D. Jiang, C. Liu, and M. Zhao. 2011. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Systems with Applications 38 (9):11280–85. doi:10.1016/j.eswa.2011.02.176.
  • Assareh, E., M. A. Behrang, M. Ghalambaz, A. R. Noghrehabadi, and A. Ghanbarzadeh. 2012. An analysis of wind speed prediction using artificial neural networks: A case study in Manjil, Iran. Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 34 (7):636–44. doi:10.1080/15567036.2011.551915.
  • Bin, L., Y. Li, and X. Rong. 2013. The extreme learning machine learning algorithm with tunable activation function. Neural Computing and Applications 22 (3):531–39. doi:10.1007/s00521-012-0858-9.
  • Chen, H., T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding. 2009. Progress in electrical energy storage system: A critical review. Progress in Natural Science 19 (3):291–312. doi:10.1016/j.pnsc.2008.07.014.
  • Chen, K., and J. Yu. 2014. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Applied Energy 113:690–705. doi:10.1016/j.apenergy.2013.08.025.
  • Foley, A. M., P. G. Leahy, A. Marvuglia, and E. J. McKeogh. 2012. Current methods and advances in forecasting of wind power generation. Renewable Energy 37 (1):1–8. doi:10.1016/j.renene.2011.05.033.
  • Giebel, G., R. Brownsword, G. Kariniotakis, M. Denhard, and C. Draxl. 2004. The state-of-the-art in short-term prediction of wind power: A literature overview. ANEMOS Project 1–111.
  • Gurgenc, T., F. Ucar, D. Korkmaz, C. Ozel, and Y. Ortac. 2019. A study on the extreme learning machine based prediction of machining times of the cycloidal gears in CNC milling machines. Production Engineering-Research and Development 13:635–47. doi:10.1007/s11740-019-00923-1.
  • Huang, G., G. B. Huang, S. Song, and K. You. 2015. Trends in extreme learning machines: A review. Neural Networks 61:32–48. doi:10.1016/j.neunet.2014.10.001.
  • Huang, G.-B., Q. Zhu, and C. K. Siew. 2006. Extreme learning machine: Theory and applications. Neurocomputing 70 (1):489–501. doi:10.1016/j.neucom.2005.12.126.
  • Lei, M., L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan. 2009. A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews 13 (4):915–20. doi:10.1016/j.rser.2008.02.002.
  • Li, G., and J. Shi. 2010. On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87 (7):2313–20. doi:10.1016/j.apenergy.2009.12.013.
  • Liu, H., H. Q. Tian, and Y. F. Li. 2012. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Applied Energy 98:415–24. doi:10.1016/j.apenergy.2012.04.001.
  • More, A., and M. C. Deo. 2003. Forecasting wind with neural networks. Marine Structures 16 (1):35–49. doi:10.1016/S0951-8339(02)00053-9.
  • Smil, V. 1994. Energy in world history. Boulder, CO: Westview Press.
  • Tascikaraoglu, A., and M. Uzunoglu. 2014. A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews 34:243–54. doi:10.1016/j.rser.2014.03.033.
  • Tian, Z. 2020. Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM. Engineering Applications of Artificial Intelligence 91:1–24. doi:10.1016/j.engappai.2020.103573.
  • Tian, Z., S. Li, and Y. Wang. 2019a. A prediction approach using ensemble empirical mode decomposition‐permutation entropy and regularized extreme learning machine for short‐term wind speed. Wind Energy 23 (2):177–206. doi:10.1002/we.2422.
  • Tian, Z., S. Li, Y. Wang, and X. Wang. 2018a. Wind power prediction method based on hybrid kernel function support vector machine. Wind Engineering 42 (3):252–64. doi:10.1177/0309524X17737337.
  • Tian, Z., Y. Ren, and G. Wang. 2019b. Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (1):26–46. doi:10.1080/15567036.2018.1495782.
  • Tian, Z., G. Wang, Y. Ren, S. Li, and Y. Wang. 2018b. An adaptive online sequential extreme learning machine for short-term wind speed prediction based on improved artificial bee colony algorithm. Neural Network World 28 (3):191–212. doi:10.14311/NNW.2018.28.012.
  • Turner, J. A. 1999. A realizable renewable energy future. Science 285 (5428):687–89. doi:10.1126/science.285.5428.687.
  • Ucar, F., J. Cordova, O. F. Alcin, B. Dandil, F. Ata, and R. Arghandeh. 2019. Bundle extreme learning machine for power quality analysis in transmission networks. Energies 12 (8):1–26. doi:10.3390/en12081449.
  • Wang, L., X. Li, and Y. Bai. 2018. Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Conversion and Management 162:239–50. doi:10.1016/j.enconman.2018.02.015.
  • Wang, S. X., M. Li, L. Zhao, and C. Jin. 2019. Short-term wind power prediction based on improved small-world neural network. Neural Computing and Applications 31 (7):3173–85. doi:10.1007/s00521-017-3262-7.
  • Weitemeyer, S., D. Kleinhans, T. Vogt, and C. Agert. 2015. Integration of renewable energy sources in future power systems: The role of storage. Renewable Energy 75:14–20. doi:10.1016/j.renene.2014.09.028.
  • Yildiz, C., M. Tekin, A. Gani, O. F. Kececioglu, H. Acikgoz, and M. Sekkeli. 2017. A day-ahead wind power scenario generation, reduction, and quality test tool. Sustainability 9 (8):1–15. doi:10.3390/su9050864.
  • Yuan, X., C. Chen, Y. Yuan, Y. Huang, and Q. Tan. 2015. Short-term wind power prediction based on LSSVM–GSA model. Energy Conversion and Management 101:393–401. doi:10.1016/j.enconman.2015.05.065.
  • Zhao, H., Q. Wu, S. Hu, H. Xu, and C. N. Rasmussen. 2015. Review of energy storage system for wind power integration support. Applied Energy 137:545–53. doi:10.1016/j.apenergy.2014.04.103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.