550
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Potential assessment of some micro- and macroalgal species for bioethanol and biodiesel production

ORCID Icon, ORCID Icon & ORCID Icon
Pages 7683-7699 | Received 17 Sep 2019, Accepted 17 Apr 2020, Published online: 30 Apr 2020

References

  • Abomohra, A., M. El-Sheekh, and D. Hanelt. 2017. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renewable Energy 101:1266–72. doi:10.1016/j.renene.2016.10.015.
  • Abomohra, A. E. F., W. Jin, V. Sagar, and G. A. Ismail. 2018. Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery. Renewable Energy 115:880–86. doi:10.1016/j.renene.2017.09.019.
  • Afify, A. E.-M.-M., E. A. Shalaby, and S. M. Shanab. 2010. Enhancement of biodiesel production from different species of algae. Grasas Y Aceites 61 (4):416–22. doi:10.3989/gya.021610.
  • Al Abdallah, Q. Q., B. T. Nixon, and J. R. Fortwendel. 2016. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Frontiers in Energy Research 4 (36):1–15. doi:10.3389/fenrg.2016.00036.
  • Alam, A., S. Ullah, S. Aftab, S. Alam, Y. Khan, K. Rahman, and Zahoord. 2017. Evaluation of Sirogonium sticticum, Uronema elongatum, Chroococcus turgidus and Temnogyra reflexa for biodiesel production in Pakistan. Biofuels 8:391–99. doi:10.1080/17597269.2016.1231959.
  • Alam, A., S. Ullah, S. Alam, H. U. Hamid Ullah Shah, S. Aftab, M. Siddiq, and N. Nazish Manzoor. 2015. Influence of culture media and carbon sources on biomass productivity and oil content of the algae Sirogonium sticticum, Temnogyra reflexa, Uronema elongatum, and Chroococcus turgidus. Turkish Journal of Botany 39:599–605. doi:10.3906/bot-1405-16.
  • Alam, A., R. Zhang, P. Liu, J. Huang, Y. Wang, Z. Hu, M. Madadi, D. Sun, R. Hu, A. J. Ragauskas, et al. 2019. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy. Miscanthus. Biotechnology for Biofuels 12:99–121. doi:10.1186/s13068-019-1437-4.
  • Aleem, A. A. 1993. The marine Algae of Alexandria, Egypt, 125. Egypt: Faculty of Science, University of Alexandria.
  • Baka, U. G., A. Mols-Mortensenc, and O. Gregersena. 2018. Production method and cost of commercial-scale offshore cultivation of kelp in the Faroe Islands using multiple partial harvesting. Algal Research 33:36–47. doi:10.1016/j.algal.2018.05.001.
  • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25 (2):207–10. doi:10.1016/j.biotechadv.2006.11.002.
  • Behera, S., R. Singh, R. Arora, N. K. Sharma, M. Shukla, and S. Kumar. 2015. Scope of algae as third generation biofuels. Frontiers in Bioengineering and Biotechnology 2:2–13. doi:10.3389/fbioe.2014.00090.
  • Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37 (8):911–17. doi:10.1139/o59-099.
  • Chen, H. Z., Z. H. Liu, and S. H. Dai. 2014. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnology for Biofuels 7 (1):53. doi:10.1186/1754-6834-7-53.
  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25:294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Choi, S. P., M. T. Nguyen, and S. J. Sim. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology 101:5330–36. doi:10.1016/j.biortech.2010.02.026.
  • Demirbas, A., and G. Edris. 2017. Biofuels production from microalgae by liquefaction and supercritical water pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39 (8):827–34. doi:10.1080/15567036.2016.1269143.
  • Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agriculture Research, New Delhi, India.
  • Dubois, M., K. A. Giles, J. K. Hamilton, P. A. Reborsand, and F. Smith. 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–56. doi:10.1021/ac60111a017.
  • El-Sheekh, M. M., H. M. Eladel, A. E. Abomohra, M. G. Battah, and S. A. Mohamed. 2019a. Optimization of biomass and fatty acid productivity of Desmodesmus intermedius as a promising microalga for biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2019.1673851.
  • El-Sheekh, M. M., A. El-Gamal, A. E. Bastawess, and A. El-Bokhomy. 2017. Production and characterization of biodiesel from the unicellular green alga. Scenedesmus Obliquus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,39 (8):783–93. doi:10.1080/15567036.2016.1263257.
  • El-Sheekh, M. M., S. F. Gheda, A. E. B. El-Sayed, A. M. Abo Shady, M. E. El-Sheikh, and M. Schagerl. 2019b. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. Environmental Science and Pollution Research 26 (18):18520–32. doi:10.1007/s11356-019-05108-y.
  • Eshaq, F. S., M. N. Ali, and M. K. Mohd. 2010. Spirogyra biomass as renewable source for biofuel (bioethanol) production. International Journal of Engineering Science and Technology 2:7045–54.
  • Guiry, M. D., and G. M. Guiry. 2018. AlgaeBase. World-wide electronic publication. National University of Ireland. http://www.algaebase.org.
  • Hamouda, R. A., M. H. Hussein, and N. E. El-Naggar. 2015. The potential value of red and brown seaweeds for sustainable bioethanol production. Bangladesh Journal of Botany 44 (4):565–70. doi:10.3329/bjb.v44i4.38571.
  • Hamouda, R. A., S. A. Sherif, G. T. M. Dawoud, and M. M. Ghareeb. 2016. Enhancement of bioethanol production from Ulva fasciata by biological and chemical saccharification. Rendiconti Lincei 27 (4):665–572. doi:10.1007/s12210-016-0546-2.
  • Hamouda, R. A., S. A. Sherif, and M. M. Ghareeb. 2018. Bioethanol production by various hydrolysis and fermentation processes with micro and macro green algae. Waste and Biomass Valorization 9 (9):1495–501. doi:10.1007/s12649-017-9936-7.
  • Harun, R., and M. K. Danquah. 2011. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry 46:304–09. doi:10.1016/j.procbio.2010.08.027.
  • Harun, R., W. S. Y. Jason, T. Cherrington, and M. K. Danquah. 2011. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy 88:3464–67. doi:10.1016/j.apenergy.2010.10.048.
  • Ho, S.-H., S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo, and J.-S. Chang. 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology 135:191–98. doi:10.1016/j.biortech.2012.10.015.
  • Hossain, A. B. M. S., and A. Salleh. 2008. Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology 4:250–54. doi:10.3844/ajbbsp.2008.250.254.
  • Hussian, A. E. 2018. The role of microalgae in renewable energy production: challenges and opportunities. In Muhammet Türkoğlu, Umur Önal and Ali Ismen, Marine ecology - biotic and abiotic interactions, 257–83. IntechOpen. doi: 10.5772/intechopen.73573
  • Jang, E. S., M. Y. Jung, and B. D. Min. 2005. Hydrogenation for low trans and high conjugated fatty acids. Comprehensive Reviews in Food Science and Food Safety 4:22–30. doi:10.1111/j.1541-4337.2005.tb00069.x.
  • Kanaan, H., and O. Belous. 2016. Marine algae of the Lebanese coast. New York: Nova Science publisher, inc.
  • Kawai, S., and K. Murata. 2016. Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. International Journal Molecular Science 17:145–61. doi:10.3390/ijms17020145.
  • Khan, M. I., J. H. Shin, and J. D. Kim. 2018. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17 (1):36–56. doi:10.1186/s12934-018-0879-x.
  • Kuhl, A., and H. Lorenzen. 1964. Handling and culturing of Chlorella. In Methods in cell physiology, ed. D. M. Prescott., Vol. I, 152–87. New York and London: Academic Press.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the phenol regent. The Journal of Biological Chemistry 193 (1):265–75.
  • Markou, G., I. Angelidaki, E. Nerantzis, and D. Georgakakis. 2013. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina). Platensis. Energies 6:3937–50. doi:10.3390/en6083937.
  • Maroušek, J. 2015. Economic analysis of the pressure shockwave disintegration process. International Journal of Green Energy 12:1232–35. doi:10.1080/15435075.2014.895740.
  • Maroušek, J., S. Itoh, O. Higa, Y. Kondo, M. Ueno, R. Suwa, Y. Komiya, J. Tominaga, and Y. Kawamitsu. 2012. The use of underwater high-voltage discharges to improve the efficiency of Jatropha curcas L. biodiesel production. Biotechnology and Applied Biochemistry 59 (6):451–56. doi:10.1002/bab.1045.
  • Maroušek, J., and J. T. H. Kwan. 2013. Use of pressure manifestations following the water plasma expansion for phytomass disintegration. Water Science and Technology 67 (8):1695–700. doi:10.2166/wst.2013.041.
  • Milledge, J. J., B. Smith, P. W. Dyer, and P. Harvey. 2014. Macroalgae-Derived Biofuel: A review of methods of energy extraction from seaweed biomass. Energies 7:7194–222. doi:10.3390/en7117194.
  • Möllers, K. B., D. Cannella, H. Jorgensen, and N. Frigaard. 2014. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnology for Biofuels 7:1–11. doi:10.1186/1754-6834-7-64.
  • Murray, P. R., E. J. Baren, J. H. Jorgensen, M. A. Pfaller, and R. H. E. Yolken. 2003. Manual of clinical Microbiology. 8th ed. Washington, D.C: ASM.
  • National Biodiesel Board: USA, 2002. Available at www.biodiesel.org/.
  • Nelson, O. E., E. T. Mektz, and L. S. Bates. 1965. Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–70. doi:10.1126/science.150.3702.1469.
  • Rippka, R., J. Deruelles, J. B. Waterburg, M. Herdman, and R. Y. Stanier. 1979. Generic assignments,strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111:1–16.
  • Saad, M. G., N. S. Dosoky, M. S. Zoromba, and H. M. Shafik. 2019. Algal Biofuels: Current status and key challenges. Energies 12:1920. doi:10.3390/en12101920.
  • Saïdane-Bchir, F., A. El Falleh, E. Ghabbarou, and M. Hamdi. 2016. 3rd generation bioethanol production from microalgae isolated from slaughterhouse wastewater. Waste and Biomass Valorization 7 (5):1041–46. doi:10.1007/s12649-016-9492-6.
  • Schenk, P., S. Thomas-Hall, E. Stephens, U. Marx, J. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research 1 (1):20–43. doi:10.1007/s12155-008-9008-8.
  • Shalaby, E. A. 2011. Algal biomass and biodiesel production, Biodiesel - Feedstocks and processing technologies, 111–32. Margarita, S.: R. InTech.
  • Sharma, P. K., M. Saharia, R. Srivstava, S. Kumar, and L. Sahoo. 2018. Tailoring microalgae for efficient biofuel production. Frontiers in Marine Science 5:1–19. doi:10.3389/fmars.2018.00382.
  • Shokrkar, H., S. Ebrahimi, and M. Zamani. 2017. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–86. doi:10.1016/j.fuel.2017.03.090.
  • SPSS. 2006. USA: SPSS base 15.0 Users guide SPSS inc. Chicago.
  • Stirk, W. A., D. L. Reinecke, and J. V. Staden. 2007. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. Journal of Applied Phycology 19:271–76. doi:10.1007/s10811-006-9134-7.
  • Tedesco, S., T. Marrero Barroso, and A. G. Olabi. 2014. Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renewable Energy 62:527–34. doi:10.1016/j.renene.2013.08.023.
  • Waghmare, A. G., M. K. Salve, J. G. LeBanc., and S. S. Arya. 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3 (16):1–11. doi:10.1186/s40643-016-0094-8.
  • Yanagisawa, M., S. Kawai, and K. Murata. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4 (4):224–35. doi:10.4161/bioe.23396.
  • Yanagisawa, M., K. Nakamura, O. Ariga, and K. Nakasaki. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry 46 (11):2111–16. doi:10.1016/j.procbio.2011.08.001.
  • Yang, L., Y. Wang, X. Liu, C. Kim, F. Dong, S. Li, J. Ding, Y. Li, I. Muhammad, and P. Zhang. 2018. Energy extraction from seaweed under low temperatures by using an alkaline fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (17):2107–15. doi:10.1080/15567036.2018.1489912.
  • Yusuff, A. S. 2019. Extraction, optimization, and characterization of oil from green microalgae Chlorophyta species. Energy sources, Part A: Recovery, utilization, and environmental effects, 1–12. https://doi.org/10.1080/15567036.2019.1676327
  • Zahoor, Y. T., L. Wang, T. Xia, D. Sun, S. Zhou, Y. Wang, and Y. Li. 2017. Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresource Technology 243:319–26. doi:10.1016/j.biortech.2017.06.111.
  • Zarrouk, C. 1966. Contribution a l’etude d’une cyanobacterie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris,France.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.