849
Views
11
CrossRef citations to date
0
Altmetric
Research Article

A comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFIS

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10322-10345 | Received 15 Apr 2020, Accepted 02 Jun 2020, Published online: 22 Jun 2020

References

  • Antonopoulos, V. Z., D. M. Papamichail, V. G. Aschonitis, and A. V. Antonopoulos. 2019. Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture 160:160–67. doi:10.1016/j.compag.2019.03.022.
  • Armin Razmjoo, A., A. Sumper, and A. Davarpanah. 2020. Energy sustainability analysis based on SDGs for developing countries. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (9):1041–56. doi:10.1080/15567036.2019.1602215.
  • Aslam, M., J. M. Lee, H. S. Kim, S. J. Lee, and S. Hong. 2019. Deep learning models for long-term solar radiation forecasting considering microgrid installation: A comparative study. Energies 13 (1):1–15. doi:10.3390/en13010147.
  • Aydın, Ç. D. 2018. Akış Katsayısının Bulanık SMGRT Yöntemi ile Modellenmesi. İnşaat Mühendisliği Anabilim Dalı. Diyarbakır: Dicle Üniversitesi Fen Bilimleri Enstitüsü.
  • Aydin, K., and R. Kenanoğlu. 2018. Effects of hydrogenation of fossil fuels with hydrogen and hydroxy gas on performance and emissions of internal combustion engines. International Journal of Hydrogen Energy 43 (30):14047–58. doi:10.1016/j.ijhydene.2018.04.026.
  • Çelik, Ö., A. Teke, and H. B. Yıldırım. 2016. The optimized artificial neural network model with Levenberg–Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production 116:1–12. doi:10.1016/j.jclepro.2015.12.082.
  • Cui, X., W. Zhang, Z. Tüske, and M. Picheny. 2018. Evolutionary stochastic gradient descent for optimization of deep neural networks. In Advances in neural information processing systems, 1 (1):6048–6058.
  • Ekici, C., and I. Teke. 2019. Global solar radiation estimation from measurements of visibility and air temperature extremes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (11):1344–59. doi:10.1080/15567036.2018.1548513.
  • Feng, L., A. Lin, L. Wang, W. Qin, and W. Gong. 2018. Evaluation of sunshine-based models for predicting diffuse solar radiation in China. Renewable and Sustainable Energy Reviews 94:168–82. doi:10.1016/j.rser.2018.06.009.
  • Gairaa, K., A. Khellaf, Y. Messlem, and F. Chellali. 2016. Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach. Renewable and Sustainable Energy Reviews 57:238–49. doi:10.1016/j.rser.2015.12.111.
  • Güçlü, Y. S., M. Ö. Yeleğen, İ. Dabanlı, and E. Şişman. 2014. Solar irradiation estimations and comparisons by ANFIS, Angström–Prescott and dependency models. Solar Energy 109:118–24. doi:10.1016/j.solener.2014.08.027.
  • Guvenc, M. A., H. Kapusuz, and S. Mistikoglu. 2020. Experimental study on accelerometer-based ladle slag detection in continuous casting process. The International Journal of Advanced Manufacturing Technology 106 (7–8):2983–93. doi:10.1007/s00170-019-04830-8.
  • Halabi, L. M., S. Mekhilef, and M. Hossain. 2018. Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Applied Energy 213:247–61. doi:10.1016/j.apenergy.2018.01.035.
  • Hinton, G., N. Srivastava, and K. Swersky. 2012. Lecture 6d-a separate, adaptive learning rate for each connection. Slides of Lecture Neural Networks for Machine Learning, 1:1–31
  • Işık, E., and M. Inallı. 2018. Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey. Energy 154:7–16. doi:10.1016/j.energy.2018.04.069.
  • Işık, E., M. İnallı, and E. Celik. 2019. ANN and ANFIS approaches to calculate the heating and cooling degree day values: The case of provinces in Turkey. Arabian Journal for Science and Engineering 44 (9):7581–97. doi:10.1007/s13369-019-03852-4.
  • Jang, J. S. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23 (3):665–85. doi:10.1109/21.256541.
  • Jović, S., O. Aničić, M. Marsenić, and B. Nedić. 2016. Solar radiation analyzing by neuro-fuzzy approach. Energy and Buildings 129:261–63. doi:10.1016/j.enbuild.2016.08.020.
  • Kaba, K., M. Sarıgül, M. Avcı, and H. M. Kandırmaz. 2018. Estimation of daily global solar radiation using deep learning model. Energy 162:126–35. doi:10.1016/j.energy.2018.07.202.
  • Keras. 2019. Keras Layers. Accessed December 30, 2019. https://keras.io/layers/core/.
  • Khosravi, A., R. O. Nunes, M. E. H. Assad, and L. Machado. 2018. Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production 194:342–58. doi:10.1016/j.jclepro.2018.05.147.
  • Kocabaş, F., and Ş. Ülker. 2006. Estimation of critical submergence for an intake in a stratified fluid media by neuro-fuzzy approach. Environmental Fluid Mechanics 6 (5):489–500. doi:10.1007/s10652-006-9005-4.
  • Köse, Ö., Y. Koç, and H. Yağlı. 2020. Performance improvement of the bottoming steam Rankine cycle (SRC) and organic Rankine cycle (ORC) systems for a triple combined system using gas turbine (GT) as topping cycle. Energy Conversion and Management 211:112745. doi:10.1016/j.enconman.2020.112745.
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In In advances in neural information processing systems (NIPS 2012), 1:1097–1105. San Diego, CA, USA. doi:10.1145/3065386.
  • Kuhe, A., V. T. Achirgbenda, and M. Agada. 2019. Global solar radiation prediction for Makurdi, Nigeria, using neural networks ensemble. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2019.1637481.
  • Landeras, G., J. J. López, O. Kisi, and J. Shiri. 2012. Comparison of gene expression programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain). Energy Conversion and Management 62:1–13. doi:10.1016/j.enconman.2012.03.025.
  • Li, H., W. Ma, Y. Lian, X. Wang, and L. Zhao. 2011. Global solar radiation estimation with sunshine duration in Tibet, China. Renewable Energy 36 (11):3141–45. doi:10.1016/j.renene.2011.03.019.
  • Mehdizadeh, S., J. Behmanesh, and K. Khalili. 2016. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. Journal of Atmospheric and Solar-Terrestrial Physics 146:215–27. doi:10.1016/j.jastp.2016.06.006.
  • Mert, İ. 2019. Activation functions for deep learning in smart manufacturing. Optimization and robotic applications. New york, USA: Nova Science Publishers. editor: Turgut Özseven), 1(1);63-93.
  • Mert, İ., C. Karakuş, and F. Üneş. 2016. Estimating the energy production of the wind turbine using artificial neural network. Neural Computing & Applications 27 (5):1231–44. doi:10.1007/s00521-015-1921-0.
  • Mohammadi, K., S. Shamshirband, D. Petković, and H. Khorasanizadeh. 2016. Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran. Renewable and Sustainable Energy Reviews 53:1570–79. doi:10.1016/j.rser.2015.09.028.
  • Olatomiwa, L., S. Mekhilef, S. Shamshirband, and D. Petković. 2015. Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renewable and Sustainable Energy Reviews 51:1784–91. doi:10.1016/j.rser.2015.05.068.
  • Ozturk, M. 2015. An evaluation of global solar radiation empirical formulations in Isparta, Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (22):2474–86. doi:10.1080/15567036.2012.745037.
  • Qin, W., L. Wang, A. Lin, M. Zhang, X. Xia, B. Hu, and Z. Niu. 2018. Comparison of deterministic and data-driven models for solar radiation estimation in China. Renewable and Sustainable Energy Reviews 81:579–94. doi:10.1016/j.rser.2017.08.037.
  • Quej, V. H., J. Almorox, J. A. Arnaldo, and L. Saito. 2017. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar-Terrestrial Physics 155:62–70. doi:10.1016/j.jastp.2017.02.002.
  • Shavandi, H., and S. S. Ramyani. 2013. A linear genetic programming approach for the prediction of solar global radiation. Neural Computing & Applications 23 (3–4):1197–204. doi:10.1007/s00521-012-1039-6.
  • Sivaneasan, B., C. Y. Yu, and K. P. Goh. 2017. Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia 143:727–32. doi:10.1016/j.egypro.2017.12.753.
  • Sun, Y., X. Wang, and X. Tang. 2014. Deep learning face representation from predicting 10,000 classes. Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA. (pp. 1891–1898). doi: 10.1109/CVPR.2014.244.
  • Takagi, T., and M. Sugeno. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics (1):116–32. doi:10.1109/TSMC.1985.6313399.
  • Tanç, B., H. T. Arat, Ç. Conker, E. Baltacioğlu, and K. Aydin. 2019. Energy distribution analyses of an additional traction battery on hydrogen fuel cell hybrid electric vehicle. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.09.241.
  • Thapar, V. 2019. A revisit to solar radiation estimations using sunshine duration: Analysis of impact of these estimations on energy yield of a PV generating system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–25. doi:10.1080/15567036.2019.1677819.
  • Toprak, Z. F. 2009. Flow discharge modeling in open canals using a new fuzzy modeling technique (SMRGT). CLEAN–Soil, Air, Water 37 (9):742–52. doi:10.1002/clen.200900146.
  • Üneş, F., M. Demirci, B. Taşar, Y. Z. Kaya, and H. Varçin. 2019. Estimating dam reservoir level fluctuations using data-driven techniques. Polish Journal of Environmental Studies 28 (5):3451–62. doi:10.15244/pjoes/93923.
  • Üneş, F., D. Joksimovic, and O. Kisi. 2015. Plunging flow depth estimation in a stratified dam reservoir using neuro-fuzzy technique. Water Resources Management 29 (9):3055–77. doi:10.1007/s11269-015-0978-y.
  • Üstün, İ. 2018. Regresyon ve multi regresyon analizleri kullanılarak güneş ışınım miktarının tahmininde yeni modellerin oluşturulması. Master thesis, Iskenderun Technical University, Iskenderun, Turkey.
  • Ustun, I., C. Karakus, and H. Yagli. 2020. Empirical models for estimating the daily and monthly global solar radiation for Mediterranean and Central Anatolia region of Turkey. International Journal of Global Warming 20 (3):249–75. doi:10.1504/IJGW.2020.106597.
  • Wang, L., O. Kisi, M. Zounemat‐Kermani, Z. Zhu, W. Gong, Z. Niu, … Z. Liu. 2017. Prediction of solar radiation in China using different adaptive neuro‐fuzzy methods and M5 model tree. International Journal of Climatology 37 (3):1141–55. doi:10.1002/joc.4762.
  • Wang, L., Y. Lu, L. Zou, L. Feng, J. Wei, W. Qin, and Z. Niu. 2019. Prediction of diffuse solar radiation based on multiple variables in China. Renewable and Sustainable Energy Reviews 103:151–216. doi:10.1016/j.rser.2018.12.029.
  • Yağli, H. 2020. Examining the receiver heat loss, parametric optimization and exergy analysis of a solar power tower (SPT) system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (17): 2155–2180. doi: 10.1080/15567036.2020.1748765.
  • Yağlı, H., C. Karakuş, Y. Koç, M. Çevik, İ. Uğurlu, and A. Koç. 2019. Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy 28 (1):96–112. doi:10.1504/IJEX.2019.097273.
  • Yelmen, B., and M. T. Çakir. 2015. Estimation of average monthly total solar radiation on horizontal surface for mediterranean region. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (5):543–51. doi:10.1080/15567036.2011.588671.
  • Yu, L., M. Zhang, L. Wang, W. Qin, Y. Lu, and J. Li. 2020. Clear-sky solar radiation changes over arid and semi-arid areas in China and their determining factors during 2001–2015. Atmospheric Environment 223:117198. doi:10.1016/j.atmosenv.2019.117198.
  • Zang, H., L. Cheng, T. Ding, K. W. Cheung, M. Wang, Z. Wei, and G. Sun. 2019. Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China. Renewable Energy 135:984–1003. doi:10.1016/j.renene.2018.12.065.
  • Zou, L., L. Wang, L. Xia, A. Lin, B. Hu, and H. Zhu. 2017. Prediction and comparison of solar radiation using improved empirical models and adaptive neuro-fuzzy inference systems. Renewable Energy 106:343–53. doi:10.1016/j.renene.2017.01.042.
  • Zounemat-Kermani, M., and M. Teshnehlab. 2008. Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Applied Soft Computing 8 (2):928–36. doi:10.1016/j.asoc.2007.07.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.