379
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of new carbon material produced from human hair and its evaluation as electrochemical supercapacitor

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2346-2356 | Received 15 Apr 2020, Accepted 09 Jun 2020, Published online: 24 Jun 2020

References

  • Ahmed, M. J., M. A. Islam, M. Asif, and B. H. Hameed. 2017a. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. Bioresource Technology 243:778–84. doi:10.1016/j.biortech.2017.06.174.
  • Ahmed, S., Y. Bhat, M. Rafat, and S. A. Hashmi. 2017b. Low temperature thermal exfoliation of graphene oxide for high performance supercapacitor. Journal of Materials Science and Surface Engineering Science 5:571–76. doi:10.jmsse/2348-8956/5-3.5.
  • Altuntaş, D. B., G. Akgül, J. Yanik, and Ü. Anik. 2017. A biochar-modified carbon paste electrode. Turkish Journal of Chemistry 41:455–65. doi:10.3906/kim-1610-8.
  • Altuntas, D. B., Y. Tepeli, and U. Anik. 2016. Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor transducers. 2D Materials (3):1–8. doi:10.1088/2053-1583/3/3/034001.
  • Ania, C. O., J. Pernak, F. Stefaniak, E. Raymundo-Piñero, and F. Béguin. 2009. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon 47:3158–66. doi:10.1016/j.carbon.2009.06.054.
  • Anthonysamy, S. B. I., S. B. Afandi, M. Khavarian, and A. R. B. Mohamed. 2018. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide. Beilstein Journal of Nanotechnology 9:740–61. doi:10.3762/bjnano.9.68.
  • Asgar, H., K. M. Deen, U. Riaz, Z. U. Rahman, U. H. Shah, and W. Haider. 2018. Synthesis of graphene via ultra-sonic exfoliation of graphite oxide and its electrochemical characterization. Materials Chemistry and Physics 206:7–11. doi:10.1016/j.matchemphys.2017.11.062.
  • Bal Altuntaş, D., V. Nevruzoğlu, M. Dokumacı, and Ş. Cam. 2020. Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Letters 30 (3):307–13. doi:10.1007/s42823-019-00099-9.
  • Baltenneck, F., Bernard, J. C. Engström, P. Riekel, C. Leroy, F. Franbourg, and J. Doucet. 2000. Study of the keratinization process in human hair follicle by X-ray microdiffraction. Cellular and Molecular Biology (Noisy-le-grand) 46:1017–24. http://www.ncbi.nlm.nih.gov/pubmed/10976881.
  • Béguin, F., V. Presser, A. Balducci, and E. Frackowiak. 2014. Carbons and electrolytes for advanced supercapacitors. Advanced Materials 26:2219–51. doi:10.1002/adma.201304137.
  • Berger, C., Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al. 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–96. doi:10.1126/science.1125925.
  • Cossutta, M., V. Vretenar, T. A. Centeno, P. Kotrusz, J. McKechnie, and S. J. Pickering. 2020. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. Journal of Cleaner Production Journal 242:118468. doi:10.1016/j.jclepro.2019.118468.
  • Deng, D., B. S. Kim, M. Gopiraman, and I. S. Kim. 2015. Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors. RSC Advances 5:81492–98. doi:10.1039/c5ra16624a.
  • El-Kady, M. F., V. Strong, S. Dubin, and R. B. Kaner. 2012. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335 (6074):1326–30. doi:10.1126/science.1216744.
  • Frackowiak, E., K. Jurewicz, S. Delpeux, and F. Béguin. 2001. Nanotubular materials for supercapacitors. Journal of Power Sources 97–98:822–25. doi:10.1016/S0378-7753(01)00736-4.
  • Gao, Y., V. Presser, L. Zhang, J. J. Niu, J. K. McDonough, C. R. Pérez, H. Lin, H. Fong, and Y. Gogotsi. 2012. High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources 201:368–75. doi:10.1016/j.jpowsour.2011.10.128.
  • Gnerlich, M., H. Ben-Yoav, J. N. Culver, D. R. Ketchum, and R. Ghodssi. 2015. Selective deposition of nanostructured ruthenium oxide using tobacco mosaic virus for micro-supercapacitors in solid nafion electrolyte. Journal of Power Sources Journal 293:649–56. doi:10.1016/j.jpowsour.2015.05.053.
  • Gopalakrishnan, A., C. Y. Kong, and S. Badhulika. 2019. Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors. New Journal of Chemistry 43:1186–94. doi:10.1039/c8nj05128c.
  • Gupta, A. 2014. Human hair “waste” and its utilization: Gaps and possibilities. Journal of Waste Management ID 498018:17. doi:10.1155/2014/498018.
  • Gupta, K. K., K. R. Aneja, and D. Rana. 2016. Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing 3:1–11. doi:10.1186/s40643-016-0105-9.
  • Hearle, J. W. S. 2000. A critical review of the structural mechanics of wool and hair fibres. Cellular and Molecular Biology (Noisy-le-grand, France) 27:123–38.
  • Huang, G., W. Kang, B. Xing, L. Chen, and C. Zhang. 2016. Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology 142:1–5. doi:10.1016/j.fuproc.2015.09.025.
  • Huggins, R. A. 2000. Supercapacitors and electrochemical pulse sources. Solid State Ionics 134:179–95. doi:10.1016/S0167-2738(00)00725-6.
  • Janowska, I. A., F. Vigneron, D. Be´gin, O. Ersen, P. Bernhardt, T. Romero, M. J. Ledoux, and C. Pham-Huu. 2012. Mechanical thinning to make few-layer graphene from pencil lead. Carbon 50:3106–10. doi:10.1016/j.carbon.2012.02.
  • Kong, W., M. Zhang, Z. Han, and Q. Zhang. 2019. A theoretical model for the triple phase boundary of solid oxide fuel cell electrospun electrodes. Applied Sciences 9:493. doi:10.3390/app9030493.
  • Korkmaz, S., and A. Kariper. 2020. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. Journal of Energy Storage 27. doi:101038.doi:10.1016/j.est.2019.101038.
  • Liu, C., Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang. 2010. Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters 10:4863–68. doi:10.1021/nl102661q.
  • Liu, K., Y. Yao, T. Lv, H. Li, N. Li, Z. Chen, G. Qian, and T. Chen. 2020. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. Journal of Power Sources Journal 446:227355. doi:10.1016/j.jpowsour.2019.227355.
  • McDonough, J. K., A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, and Y. Gogotsi. 2012. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50:3298–309. doi:10.1016/j.carbon.2011.12.022.
  • Mu, X., J. Du, Y. Zhang, Z. Liang, H. Wang, B. Huang, J. Y. Zhou, X. Pan, Z. Zhang, and E. Xie. 2017. Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors. ACS Applied Materials & Interfaces 9:35775–84. doi:10.1021/acsami.7b09005.
  • Niu, C., E. K. Sichel, R. Hoch, D. Moy, and H. Tennent. 1997. High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters 70:1480–82. doi:10.1063/1.118568.
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field in atomically thin carbon films. Science 306:666–69. doi:10.1126/science.1102896.
  • Obreja, V. V. N. 2008. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-A review. Physics E: Low-dimensional Systems and Nanostructures 40:2596–605. doi:10.1016/j.physe.2007.09.044.
  • Qian, W., F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, and F. Yan. 2014. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy & Environmental Science 7:379–86. doi:10.1039/c3ee43111h.
  • Si, W., J. Zhou, S. Zhang, S. Li, W. Xing, and S. Zhuo. 2013. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochimica acta 107:397–405. doi:10.1016/j.electacta.2013.06.065.
  • Tian, J., S. Wu, X. Yin, and W. Wu. 2019. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science Journal 496:143696. doi:10.1016/j.apsusc.2019.143696.
  • Tuinstra, F., and J. L. Koenig. 1970. Raman spectrum of graphite. The Journal of Chemical Physics 53 (3):1126–30. doi:10.1063/1.1674108.
  • Wang, Q., J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, and Z. Fan. 2014. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–27. doi:10.1016/j.carbon.2013.09.070.
  • Wang, Y., D. C. Alsmeyer, and R. L. McCreery. 1990. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials 2:557–63. doi:10.1021/cm00011a018.
  • Wu, D., C. Wang, M. Wu, Y. Chao, P. He, and J. Ma. 2020. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. Journal of Energy Chemistry 43:24–32. doi:10.1016/j.jechem.2019.08.003.
  • Yang, H., S. Kannappan, A. S. Pandian, J.-H. Jang, Y. S. Lee, and W. Lu. 2015. Nanoporous graphene materials by lowerature vacuum-assisted thermal process for electrochemical energy storage. Journal of Power Sources Journal 284:146–53. doi:10.1016/j.jpowsour.2015.03.015.
  • Yang, H., S. Kannappan, A. S. Pandian, J.-H. Jang, Y. S. Lee, and W. Lu. 2017. Graphene supercapacitor with both high power and energy density. Nanotechnology 28:45401. doi:10.1088/1361-6528/aa8948.
  • Yanik, M. O., E. A. Yigit, Y. E. Akansu, and E. Sahmetlioglu. 2017. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 138:883–89. doi:10.1016/j.energy.2017.07.022.
  • Yu, J., J. Tu, F. Zhao, and B. Zeng. 2010. Direct electrochemistry and biocatalysis of glucose oxidase immobilized on magnetic mesoporous carbon. Journal of Solid State Electrochemistry 14 (9):1595–600. doi:10.1007/s10008-009-0990-3.
  • Zhang, L. L., Y. Gu, and X. S. Zhao. 2013. Advanced porous carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A 1:9395–408. doi:10.1039/c3ta11114h.
  • Zhang, M., B. Gao, Y. Yao, Y. Xue, and M. Inyang. 2012. Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of the Total Environment 435–436 (2012):567–72. doi:10.1016/j.scitotenv.2012.07.038.
  • Zhao, R., Y. Wang, Y. Hasebe, Z. Zhang, and D. Tao. 2020. Determination of glucose using a biosensor based on glucose oxidase immobilized on a molybdenite-decorated glassy carbon electrode. International Journal of Electrochemical Science 15:1595–605. doi:10.20964/2020.02.45.
  • Zhao, Z. Q., P. W. Xiao, L. Zhao, Y. Liu, and B. H. Han. 2015. Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption. RSC Advances 5 (2015):73980–88. doi:10.1039/c5ra15690d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.