327
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Analysis of heat conduction in a nanoscale metal oxide semiconductor field effect transistor using lattice Boltzmann method

ORCID Icon, ORCID Icon & ORCID Icon
Pages 8864-8878 | Received 03 May 2020, Accepted 14 Jun 2020, Published online: 30 Jun 2020

References

  • Aissa, M. F. B., F. Nasri, and H. Belmabrouk. 2017. Multidimensional nano heat conduction in cylindrical transistors. IEEE Transactions on Electron Devices 64 (12):5236–41. doi:10.1109/TED.2017.2763241.
  • Aissa, M. F. B., H. Rezgui, F. Nasri, H. Belmabrouk, and A. Guizani. 2019. Thermal transport in graphene field-effect transistors with ultrashort channel length. Superlattices and Microstructures 128:265–73. doi:10.1016/j.spmi.2019.02.004.
  • Ashcroft, N. W., and N. D. Mermin. 1976. Solid state physics. ed. N. W. Ashcroft and N. D. Mermin, New York: Holt, Rinehart and Winston.
  • Cattaneo, C. 1958. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus 247:431.
  • Chen, G. 2005. Nanoscale energy transport and conversion: A parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, New York, NY.
  • Cheng, A., S. Chen, H. Zeng, D. Ding, and R. Chen. 2018. Transient analysis for electrothermal properties in nanoscale transistors. IEEE Transactions on Electron Devices 65 (9):3930–35. doi:10.1109/TED.2018.2858813.
  • Escobar, R. A., and C. H. Amon. 2008. Thin film phonon heat conduction by the dispersion lattice Boltzmann method. Journal of Heat Transfer 130 (9):092402. doi:10.1115/1.2944249.
  • Escobar, R. A., S. S. Ghai, C. H. Amon, and M. S. Jhon. 2003. Time-dependent simulations of sub-continuum heat generation effects in electronic devices using the lattice Boltzmann method. In ASME 2003 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 603–12, Washington, DC, USA.
  • Escobar, R. A., S. S. Ghai, M. S. Jhon, and C. H. Amon. 2006. Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling. International Journal of Heat and Mass Transfer 49 (1–2):97–107. doi:10.1016/j.ijheatmasstransfer.2005.08.003.
  • Fiori, G., F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo et al. 2014. Electronics based on two-dimensional materials. Nature Nanotechnology. 9(10):768. doi:10.1038/nnano.2014.207.
  • Ghazanfarian, J., and A. Abbassi. 2009. Effect of boundary phonon scattering on Dual-Phase-Lag model to simulate micro-and nano-scale heat conduction. International Journal of Heat and Mass Transfer 52 (15–16):3706–11. doi:10.1016/j.ijheatmasstransfer.2009.01.046.
  • Ghazanfarian, J., and A. Abbassi. 2012. Investigation of 2D transient heat transfer under the effect of dual-phase-lag model in a nanoscale geometry. International Journal of Thermophysics 33 (3):552–66. doi:10.1007/s10765-012-1164-6.
  • Ghazanfarian, J., and Z. Shomali. 2012. Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor. International Journal of Heat and Mass Transfer 55 (21–22):6231–37. doi:10.1016/j.ijheatmasstransfer.2012.06.052.
  • Guo, Y., and M. Wang. 2016. Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics 315:1–15. doi:10.1016/j.jcp.2016.03.041.
  • Kittel, C. 1976. Introduction to solid state physics. New York: Wiley.
  • Lai, J., and A. Majumdar. 1996. Concurrent thermal and electrical modeling of sub‐micrometer silicon devices. Journal of Applied Physics 79 (9):7353–61. doi:10.1063/1.361424.
  • Mahabadian, M., M. Ghayyem, and M. Jamialahmadi. 2015. Multicomponent multiphase Lattice-Boltzmann modeling of fingering during immiscible displacement. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37 (6):642–48. doi:10.1080/15567036.2011.585377.
  • Mahabadian, M., and M. Jamialahmadi. 2012. The investigation of longitudinal dispersion coefficient in a miscible displacement process using multicomponent multiphase Shan-Chen Lattice-Boltzmann modeling. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (24):2268–79. doi:10.1080/15567036.2011.563271.
  • Majumdar, A., “Microscale heat conduction in dielectric thin films,” 1993.
  • Moghaddam, M., J. Ghazanfarian, and A. Abbassi. 2014. Implementation of DPL-DD model for the simulation of nanoscale MOS devices. IEEE Transactions on Electron Devices 61 (9):3131–38. doi:10.1109/TED.2014.2342037.
  • Nasri, F., M. B. Aissa, and H. Belmabrouk. 2015. Effect of second-order temperature jump in metal-oxide-semiconductor field effect transistor with dual-phase-lag model. Microelectronics Journal 46 (1):67–74. doi:10.1016/j.mejo.2014.10.007.
  • Nasri, F., M. F. B. Aissa, and H. Belmabrouk. 2017. Nonlinear electrothermal model for investigation of heat transfer process in a 22-nm FD-SOI MOSFET. IEEE Transactions on Electron Devices 64 (4):1461–66. doi:10.1109/TED.2017.2666262.
  • Nasri, F., M. F. B. Aissa, M. H. Gazzah, and H. Belmabrouk. 2015a. 3D thermal conduction in a nanoscale Tri-Gate MOSFET based on single-phase-lag model. Applied Thermal Engineering 91:647–53. doi:10.1016/j.applthermaleng.2015.08.045.
  • Nasri, F., F. Echouchene, M. B. Aissa, I. Graur, and H. Belmabrouk. 2015b. Investigation of self-heating effects in a 10-nm SOI-MOSFET with an insulator region using electrothermal modeling. IEEE Transactions on Electron Devices 62 (8):2410–15.
  • Pop, E., S. Sinha, and K. E. Goodson. 2006. Heat generation and transport in nanometer-scale transistors. Proceedings of the IEEE 94 (8):1587–601. doi:10.1109/JPROC.2006.879794.
  • Rezgui, H., F. Nasri, M. F. B. Aissa, and A. A. Guizani. 2018. Study of heat dissipation mechanism in nanoscale MOSFETs using BDE model. In Green electronics, 15–29.IntechOpen,London, SE19SG, United Kingdom, Edited by Cristian Ravariu and Dan Mihaiescu.
  • Samian, R., A. Abbassi, and J. Ghazanfarian. 2013. Thermal investigation of common 2D FETs and new generation of 3D FETs using Boltzmann transport equation in nanoscale. International Journal of Modern Physics C 24 (9):1350064. doi:10.1142/S0129183113500642.
  • Shomali, Z., and R. Asgari. 2018. Effects of low-dimensional material channels on energy consumption of nano-devices. International Communications in Heat and Mass Transfer 94:77–84. doi:10.1016/j.icheatmasstransfer.2018.03.014.
  • Subrina, S., D. Kotchetkov, and A. A. Balandin. 2009. Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electron Device Letters 30 (12):1281–83. doi:10.1109/LED.2009.2034116.
  • Sverdrup, P. G., Y. S. Ju, and K. E. Goodson. 2001. Sub-continuum simulations of heat conduction in silicon-on-insulator transistors. Journal of Heat Transfer 123 (1):130–37. doi:10.1115/1.1337651.
  • Taur, Y., C. H. Wann, and D. J. Frank. 1998. 25 nm CMOS design considerations,” in International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), IEEE, 789–92, San Francisco, CA, USA.
  • Tzou, D. Y. 1995. A unified field approach for heat conduction from macro-to micro-scales. Journal of Heat Transfer 117:8–16. doi:10.1115/1.2822329.
  • Vernotte, P. 1958. Les paradoxes de la theorie continue de l’equation de la chaleur. Compt. Rendu 246:3154–55.
  • Wang, H., X. Hao, H. Zhou, Y. Zhang, and D. Li. 2016. Underfill flow simulation based on lattice Boltzmann method. Microelectronic Engineering 149:66–72. doi:10.1016/j.mee.2015.09.010.
  • Xu, M., and H. Hu. 2011. A ballistic-diffusive heat conduction model extracted from Boltzmann transport equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131):1851–64. doi:10.1098/rspa.2010.0611.
  • Yang, R., G. Chen, M. Laroche, and Y. Taur. 2005. Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. Journal of Heat Transfer 127 (3):298–306. doi:10.1115/1.1857941.
  • Zhang, Z. X., Q. Lin, M. Zhu, and C. L. Lin. 2004. A new structure of SOI MOSFET for reducing self-heating effect. Ceramics International 30 (7):1289–93. doi:10.1016/j.ceramint.2003.12.033.
  • Zhu, M., P. Chen, R.-Y. Fu, Z. An, C. Lin, and P. K. Chu. 2004. Numerical study of self-heating effects of MOSFETs fabricated on SOAN substrate. IEEE Transactions on Electron Devices 51 (6):901–06. doi:10.1109/TED.2004.827362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.