567
Views
8
CrossRef citations to date
0
Altmetric
Review

Enhancement of biogas production process from biomass wastes using iron-based additives: types, impacts, and implications

ORCID Icon & ORCID Icon
Pages 4458-4480 | Received 10 May 2020, Accepted 21 Jun 2020, Published online: 05 Jul 2020

References

  • Abdelsalam, E., M. Samer, Y. A. Attia, M. A. Abdel-Hadi, H. E. Hassan, and Y. Badr. 2016. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy 87:592–98. doi:10.1016/j.renene.2015.10.053.
  • Abdelwahab, T. A. M., M. K. Mohanty, P. K. Sahoo, and D. Behera. 2020. Application of nanoparticles for biogas production: Current status and perspectives. Energy Source PART A 1–13. doi:10.1080/15567036.2020.1767730.
  • Agani, I. C., F. Suanon, B. Dimon, E. B. Ifon, F. Yovo, V. D. Wotto, O. K. Abass, and M. N. Kumwimba. 2016. Enhancement of Fecal Sludge conversion into biogas using iron powder during anaerobic digestion process. American Journal of Environmental Protection 5 (6):179–86. doi:10.11648/j.ajep.20160506.15.
  • Ahn, H., M. Smith, S. Kondrad, and J. White. 2010. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. Applied Biochemistry and Biotechnology 160:965–75. doi:10.1007/s12010-009-8624-x.
  • Akunna, J. C. 2018. Anaerobic waste-wastewater treatment and biogas plants: A practical handbook. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Ali, A., R. B. Mahar, R. A. Soomro, and S. T. H. Sherazi. 2017. Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Source Part A 39 (16):1815–22. doi:10.1080/15567036.2017.1384866.
  • Ambuchi, J. J., Z. Zhang, Y. Dong, L. Huang, and H. Feng. 2018. Hematite and multi-walled carbon nanotubes stimulate a faster syntrophic pathway during methanogenic beet sugar industrial wastewater degradation. Applied Microbiology and Biotechnology 102:7147–58. doi:10.1007/s00253-018-9100-8.
  • Amen, T. W., O. Eljamal, A. M. Khalil, Y. Sugihara, and N. Matsunaga. 2018. Methane yield enhancement by the addition of new novel of iron and copper-iron bimetallic nanoparticles. Chemical Engineering and Processing - Process Intensification 130:253–61. doi:10.1016/j.cep.2018.06.020.
  • Amen, T. W. M., O. Eljamal, A. M. E. Khali, and N. Matsunaga. 2017. Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions. Journal of Environmental Chemical Engineering 5:5002–13. doi:10.1016/j.jece.2017.09.030.
  • Arif, S., R. Liaquat, and M. Adil. 2018. Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews 97:354–66. doi:10.1016/j.rser.2018.08.039.
  • Baredar, P., S. Suresh, A. Kumar, and P. Krishnakumar. 2016. A review on enhancement of biogas yield by pre-treatment and addition of additives. MATEC Web of Conferences 62 (6002):1–5. doi:10.1051/matecconf/20166206002.
  • Basu, P. 2018. Biomass combustion and cofiring. Biomass gasification, pyrolysis and torrefaction, 393–413. London, United Kingdom: Academic press. doi:10.1016/b978-0-12-812992-0.00011-x.
  • Bhange, V. P., S. P. M. William, A. Sharma, J. Gabhane, A. N. Vaidya, and S. R. Wate. 2015. Pretreatment of garden biomass using Fenton’s reagent: Influence of Fe2+ and H2O2 concentrations on lignocellulose degradation. Journal of Environmental Health Science and Engineering 13:12. doi:10.1186/s40201-015-0167-1.
  • Borja, J. Q., M. A. S. Ngo, C. C. Saranglao, R. P. M. Tiongco, E. C. Roque, and N. P. Dugos. 2014. Synthesis of green zero-valent iron using polyphenols from dried green tea extract. Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, Taylor’s University, Malaysia. January 22-31 2015.
  • BP. 2019. BP statistical review of world energy 2019. 68th ed. 1–64. UK: Pureprint. June. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf.
  • Cai, J., Y. He, X. Yu, S. W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, and A. V. Bridgwater. 2017. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 76:309–22. doi:10.1016/j.rser.2017.03.072.
  • Carlsson, M. 2015. When and why is pre-treatment of substrates for anaerobic digestion useful? Doctoral thesis, DCENR Engineering (Waste Science and Technology) Luleå University of Technology. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17712.
  • Casals, E., R. Barrena, A. García, E. González, L. Delgado, M. Busquets-Fité, X. Font, J. Arbiol, P. Glatzel, K. Kvashnina, et al. 2014. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small 10:2801–08. doi:10.1002/smll.
  • Chen, H., H. Luo, Y. Lan, T. Dong, B. Hu, and Y. Wang. 2011. Removal of tetracycline from aqueous solutions using poly vinylpyrrolidone (PVP-K30) modified nano scale zero-valent iron. Journal of Hazardous Materials 192:44–53. doi:10.1016/j.jhazmat.2011.04.089.
  • Chen, R., Y. Konishi, and T. Nomura. 2018. Enhancement of methane production by Methanosarcina barkeri using Fe3O4 nanoparticles as iron sustained release agent. Advanced Powder Technology 29:2429–33. doi:10.1016/j.apt.2018.06.022.
  • Cheng, X., B. Chen, Y. Cui, D. Sun, and X. Wang. 2015. Iron (III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Separation and Purification Technology 143 (2015):6–11. doi:10.1016/j.seppur.2015.01.002.
  • Del Valle-Zermeno, R., M.S., Romero-Guiza, J.M., Chimenos, J., Formosa, J., Mata-Alvarez, S., Astals. 2015. Biogas upgrading using MSWI bottom ash: an integrated municipal solid waste management. Renew Energ 80:184–189. doi:10.1016/j.renene.2015.02.006
  • Eljamal, O., I. P. Thompson, I. Maamoun, T. Shubair, K. Eljamal, K. Lueangwattanapong, and Y. Sugihara. 2020. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal. Journal of Molecular Liquids 299:112144. doi:10.1016/j.molliq.2019.112144.
  • Eljamal, O., R. Mokete, N. Matsunaga, and Y. Sugihara. 2018. Chemical pathways of nanoscale zero-valent iron (NZVI) during its transformation in aqueous solutions. Journal of Environmental Chemical Engineering 6 (5):6207–20. doi:10.1016/j.jece.2018.09.012.
  • Elsayed, M., Y. Andres, W. Blel, A. Gad, and A. Ahmed. 2016. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Conversion and Management 117:538–47. doi:10.1016/j.enconman.2016.03.064.
  • Fazlzadeh, M., K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, and R. Khosravi. 2016. A novel green synthesis of zero-valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr (VI) from aqueous solutions. Advanced Powder Technology : The International Journal of the Society of Powder Technology, Japan. doi:10.1016/j.apt.2016.09.003.
  • Feng, Y., Y. Zhang, X. Quan, and S. Chen. 2014. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero-valent iron. Water Research 52:242–50. doi:10.1016/j.watres.2013.10.072.
  • Ganzoury, M. A., and N. K. Allam. 2015. Impact of nanotechnology on biogas production: A mini-review. Renewable and Sustainable Energy Reviews 50:1392–404. doi:10.1016/j.rser.2015.05.073.
  • Gao, N., L. Zhang, and C. Wu. 2018. Biomass and wastes for bioenergy: Thermochemical conversion and biotechnologies. BioMed Research International 9638380:1–2. doi:10.1155/2018/9638380.
  • Gao, P., C. Gu, X. Wei, X. Li, H. Chen, H. Jia, Z. Liu, G. Xue, and C. Ma. 2017. The role of zero-valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Water Research 111:92–99. doi:10.1016/j.watres.2016.12.047.
  • Gao, P., S., He, S., Huang, K., Li, Z., Liu, G., Xue and W., Sun. 2015. Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Appl Microbiol Biotechnol 99, 3971–3980. doi:10.1007/s00253-015-6404-9 9
  • Guo, X., S. Liu, Z. Wang, X. Zhang, M. Li, and B. Wu. 2014. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8. doi:10.1016/j.chemosphere.2014.03.068.
  • Guven, D. E., and G. Akinci. 2010. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi University Journal of Science 24 (1):29–34.
  • Hao, X., J. Wei, M. C. M. van-Loosdrecht, and D. Cao. 2017. Analysing the mechanisms of sludge digestion enhanced by iron. Water Research 117:58–67. doi:10.1016/j.watres.2017.03.048.
  • He, C.-S., -P.-P. He, H.-Y. Yang, -L.-L. Li, Y. Lin, Y. Mu, and H.-Q. Yu. 2017. Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Research 127:32–40. doi:10.1016/j.watres.2017.09.061.
  • Hotze, E. M., T. Phenrat, and G. V. Lowry. 2010. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality 39 (6):1909–24. doi:10.2134/jeq2009.0462.
  • Huang, C. H., S. M. Liu, and N. Y. Hsu. 2020. Understanding global food surplus and food waste to tackle economic and environmental sustainability. Sustainability 12 (7):2892. doi:10.3390/su12072892.
  • IEA. 2020. Outlook for biogas and biomethane: Prospects for organic growth. Paris: IEA. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth.
  • Jia, T., Z. Wang, H. Shan, Y. Liu, and L. Gong. 2017. Effect of nanoscale zero-valent iron on sludge anaerobic digestion. Resources, Conservation and Recycling 127:190–95. doi:10.1016/j.resconrec.2017.09.007.
  • Jiang, D., X. Hu, R. Wang, and D. Yin. 2015. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors. Chemosphere 122:8–13. doi:10.1016/j.chemosphere.2014.09.095.
  • Jiang, L., Z. Hu, Y. Wang, D. Ru, J. Li, and J. Fan. 2018. Effect of trace elements on the development of co-cultured nitrite-dependent anaerobic methane oxidation and methanogenic bacteria consortium. Bioresource Technology 268:190–96. doi:10.1016/j.biortech.2018.07.139.
  • Kim, M., D. Li, O. Choi, B. Sang, P. C. Chiang, and H. Kim. 2017. Effects of supplement additives on anaerobic biogas production. Korean Journal of Chemical Engineering 34 (7):1–8. doi:10.1007/s11814-017-0175-1.
  • Kim, N. J., S. J. Lim, and H. N. Chang. 2018. Volatile fatty acid platform: concept and application. In Emerging areas in bioengineering, ed. H. N. Chang, (pp. 173–90). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/9783527803293.ch10.
  • Kong, X., S. Yu, S. Xu, W. Fang, J. Liu, and H. Li. 2018. Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Management 71:719–27. doi:10.1016/j.wasman.2017.03.019.
  • Koniuszewska, I., E. Korzeniewska, M. Harnisz, and M. Czatzkowska. 2020. Intensification of biogas production using various technologies: A review. International Journal of Energy Research 1–19. doi:10.1002/er.5338.
  • Kreuger, E., B. Sipos, G. Zacchi, S. E. Svensson, and L. Bjornsson. 2011. Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production. Bioresource Technology 102 (3):3457–65. doi:10.1016/j.biortech.2010.10.126.
  • Lee, C., J. Y. Kim, W. I. Lee, K. L. Nelson, J. Yoon, and D. L. Sedlak. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science & Technology 42 (13):4927–33. doi:10.1021/es800408u.
  • Li, W., H. Khalid, Z. Zhu, R. Zhang, G. Liu, C. Chen, and E. Thorin. 2018. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Applied Energy 226:1219–28. doi:10.1016/j.apenergy.2018.05.055.
  • Li, X. Q., D. G. Brown, and W. X. Zhang. 2007. Stabilization of biosolids with nanoscalezero-valent iron (nZVI). Journal of Nanoparticle Research 9:233–43. doi:10.1007/s11051-006-9187-1.
  • Li, Y., Y. Chen, and J. Wu. 2019. Enhancement of methane production in anaerobic digestion process: A review. Applied Energy 240:120–37. doi:10.1016/j.apenergy.2019.01.243.
  • Liu, Z., C. Ma, C. Gao, and P. Xu. 2012. Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacterium acidipropionici. Bioresource Technology 114 (71):1–4. doi:10.1016/j.biortech.2012.02.118.
  • Lovley, D. R. 2017. Syntrophy goes electric: Direct interspecies electron transfer (DIET). Annual Review of Microbiology 71 (1):643–64. doi:10.1146/annurev-micro-030117-020420.
  • Lozano, J. 2010. Enhanced anaerobic digestion using Fenton reagent. WEFTEC 2010: Session 61 through session 70. Proceedings of the Water Environment Federation 2010 (12):4885–97. doi:10.2175/193864710798182646.
  • Lu, X., H. Wang, F. Ma, G. Zhao, and S. Wang. 2016. Enhanced anaerobic digestion of cow manure and rice straw by the supplementation of iron oxide-zeolite system. Energy & Fuels : An American Chemical Society Journal 31 (1):599–606. doi:10.1021/acs.energyfuels.6b02244.
  • Lv, W., F. L. Schanbacher, and Z. Yu. 2010. Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes. Bioresource Technology 101 (24):9409–14. doi:10.1016/j.biortech.2010.07.100.
  • Maamir, W., Y. Ouahabi, S. Poncin, H.-Z. Li, and K. Bensadok. 2017. Effect of Fenton pretreatment on anaerobic digestion of olive mill wastewater and olive mill solid waste in mesophilic conditions. International Journal of Green Energy 14 (6):555–60. doi:10.1080/15435075.2017.1307201.
  • Maletta, E., and C. H. Díaz‐Ambrona. 2020. Lignocellulosic crops as sustainable raw materials for bioenergy. Green Energy to Sustainability: Strategies for Global Industries 489–514. doi:10.1002/9781119152057.ch20.
  • Mao, C., Y. Feng, X. Wang, and G. Ren. 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews 45:540–55. doi:10.1016/j.rser.2015.02.032.
  • Meng, X., Y. Zhang, Q. Li, and X. Quan. 2013. Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate. Biochemical Engineering Journal 73:80–85. doi:10.1016/j.bej.2013.02.004.
  • Michalska, K., K. Miazek, L. Krzystek, and S. Ledakowicz. 2012. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology 119:72–78. doi:10.1016/j.biortech.2012.05.105.
  • Moestedt, J., E. Nordell, S. S. Yekta, J. Lundgren, M. Marti, C. Sundberg, J. Ejlertsson, B. H. Svensson, and A. Bjorn. 2016. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Management 47:11–20. doi:10.1016/j.wasman.2015.03.007.
  • Mokete, R., O. Eljamal, and Y. Sugihara. 2020. Exploration of the reactivity of nanoscale zero-valent iron (NZVI) associated nanoparticles in diverse experimental conditions. Chemical Engineering and Processing-Process Intensification 150:107879. doi:10.1016/j.cep.2020.107879.
  • Mukherjee, R., D. Sengupta, and S. K. Sikdar. 2015. Sustainability in the context of process engineering. Clean Technologies and Environmental Policy 17 (4):833–40. doi:10.1007/s10098-015-0952-7.
  • Noonari, A. A., R. B. Mahar, A. R. Sahito, and K. M. Brohi. 2019. Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renewable Energy 133:1046–54. doi:10.1016/j.renene.2018.10.113.
  • Noubactep, C. 2010. Review: The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36 (5):663–70. doi:10.4314/wsa.v36i5.62000.
  • Ogejo, J. A., Z. Wen, J. Ignosh, E. Bendfeldt, and E. R. Collins. 2009. Biomethane technology. Virginia Cooperative Extension 442–881. http://pubs.ext.vt.edu/442/442-881/442-881pdf.pdf.
  • Peeters, K., G. Lespes, T. Zuliani, J. Scancar, and R. Milacic. 2016. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs. Water Research 94:315–27. doi:10.1016/j.watres.2016.03.004.
  • Prasad, K. S., P. Gandhi, and K. Selvaraj. 2014. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As (III) and As(V) from aqueous solution. Applied Surface Science 317:1052–59. doi:10.1016/j.apsusc.2014.09.042.
  • Pruden, A., R. T. Pei, H. Storteboom, and K. H. Carlson. 2006. Antibiotic resistance genes as emerging contaminants: Studies in Northern Colorado†. Environmental Science & Technology 40 (23):7445–50. doi:10.1021/es060413l.
  • Puyol, D., X. Flores-Alsina, Y. Segura, R. Molina, S. Jerez, K. V. Gernaey, J. A. Melero, and F. Martinez. 2017. ZVI addition in continuous anaerobic digestion systems dramatically decreases P recovery potential: Dynamic modelling. In Frontiers in wastewater treatment and modelling, ed. G. Mannina, (pp. 211–17). Cham Switzerland: Springer Nature. doi:10.1007/978-3-319-58421-8.
  • Puyol, D., X. Flores-Alsina, Y. Segura, R. Molina, B. Padrino, J. L. G. Fierro, K. V. Gernaey, J. A. Melero, and F. Martinez. 2018. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process. Chemical Engineering Journal 335:703–11. doi:10.1016/j.cej.2017.11.029.
  • Romero-Güiza, M. S., J. Vila, J. Mata-Alvarez, J. M. Chimenos, and S. Astals. 2016. The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews 58:1486–99. doi:10.1016/j.rser.2015.12.094.
  • Salihu, A., and Alam M Z. 2016. Pretreatment methods of organic wastes for biogas production. Journal of Applied Sciences 16:124–37. doi:10.3923/jas.2016.124.137.
  • Santos, L. H. M. L., A. N. Araújo, A. Fachini, A. Pena, C. Delerue-Matos, and M. C. B. S. M. Montenegro. 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials 175:45–95. doi:10.1016/j.jhazmat.2009.10.100.
  • Schmidt, T., B. K. McCabe, W. P. Harris, and S. Lee. 2018. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater. Bioresource Technology 264:51–57. doi:10.1016/j.biortech.2018.05.050.
  • Selvam, A., D. Xu, Z. Zhao, and J. W. C. Wong. 2012. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresource Technology 126:383–90. doi:10.1016/j.biortech.2012.03.045.
  • Shahriari, H., M. Warith, M. Hamoda, and K. J. Kennedy. 2012. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Management 32 (1):41–52. doi:10.1016/j.wasman.2011.08.012.
  • Stams, A. J., and C. M. Plugge. 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology 7 (8):568–77. doi:10.1038/nrmicro2166.
  • Suanon, F., Q. Sun, D. Mama, J. Li, B. Dimon, and C.-P. Yu. 2016. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge. Water Research 88:897–903. doi:10.1016/j.watres.2015.11.014.
  • Suanon, F., Q. Sun, M. Li, X. Cai, Y. Zhang, Y. Yan, and C.-P. Yu. 2017. Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation. Journal of Hazardous Materials 321:47–53. doi:10.1016/j.jhazmat.2016.08.076.
  • Taha, M. R., A. H. Ibrahim, R. C. Amat, and A. W. Azhari. 2014. Applicability of nano zero valent iron (nZVI) in sono – Fenton process. Journal of Physics: Conference Series 495 (12010):1–9. doi:10.1088/1742-6596/495/1/012010.
  • Tang, S. C. N., and I. M. C. Lo. 2013. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research 47:2613–32. doi:10.1016/j.watres.2013.02.039.
  • Ugwu, S. N., and C. C. Enweremadu. 2019. Effects of pre-treatments and co-digestion on biogas production from Okra waste. Journal of Renewable and Sustainable Energy 11 (1):013101. doi:10.1063/1.5049530.
  • Ugwu, S. N., R. K. Biscoff, and C. C. Enweremadu. 2020. A meta-analysis of iron-based additives on enhancements of biogas yields during anaerobic digestion of organic wastes. Journal of Cleaner Production 269:122449. doi:10.1016/j.jclepro.2020.122449.
  • Uman, A. E., J. G. Usack, J. L. Lozano, and L. T. Angenent. 2018. Controlled experiment contradicts the apparent benefits of the Fenton reaction during anaerobic digestion at a municipal wastewater treatment plant. Water Science and Technology 78 (9):1861–70. doi:10.2166/wst.2018.362.
  • UNSTAT. 2020. Composition of municipal waste. https://unstats.un.org/unsd/envstats/Questionnaires/2019/Tables/Composition%20of%20Municipal%20Waste%20(latest%20year).xlsx.
  • Wagner, T., T. Watanabe, and S. Shima. 2018. Hydrogenotrophic Methanogenesis. Biogenesis of Hydrocarbons 1–29. doi:10.1007/978-3-319-53114-4_3-1.
  • Wan, S., L. Sun, Y. Douieb, J. Sun, and W. Luo. 2013. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: Performance and microbial community structure characterization. Bioresource Technology 146:619–27. doi:10.1016/j.biortech.2013.07.140.
  • Wang, T., D. Zhang, L. Dai, Y. Chen, and X. Dai. 2016. Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Scientific Reports 6:25857. doi:10.1038/srep25857.
  • Wang, Y., D. Wang, and H. Fang. 2018. Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron. RSC Advances 8:27181–90. doi:10.1039/C8RA05369C.
  • Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology 99 (17):7928–40. doi:10.1016/j.biortech.2008.02.044.
  • World Bioenergy Association (WBA). 2019. Global bioenergy statistics 2019 summary report. Accessed May26, 2020. https://worldbioenergy.org/global-bioenergy-statistics.
  • Xiao, Y., E. Zhang, J. Zhang, Y. Dai, Z. Yang, H. E. M. Christensen, J. Ulstrup, and F. Zhao. 2017. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances 3 (7):1700623. doi:10.1126/sciadv.1700623.
  • Yadav, A. K., S. Jena, B. C. Acharya, and B. K. Mishra. 2012. Removal of azo dye in innovative constructed wetlands: Influence of iron scrap and sulfate reducing bacterial enrichment. Ecological Engineering 49:53–58. doi:10.1016/j.ecoleng.2012.08.032.
  • Yang, Y., F. Yang, W. Huang, W. Huang, F. Li, Z. Lei, and Z. Zhang. 2018. Enhanced anaerobic digestion of ammonia-rich swine manure by zero-valent iron: With special focus on the enhancement effect on hydrogenotrophic methanogenesis activity. Bioresource Technology 270:172–79. doi:10.1016/j.biortech.2018.09.008.
  • Yang, Y., J. Guo, and Z. Hu. 2013. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Research 47 (17):6790–800. doi:10.1016/j.watres.2013.09.012.
  • Ye, J., A. Hu, G. Ren, M. Chen, J. Tang, P. Zhang, S. Zhou, and Z. He. 2018. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Research 134:54–62. doi:10.1016/j.watres.2018.01.062.
  • Ye, J., X. Cong, P. Zhang, E. Hoffmann, G. Zeng, Y. Wu, H. B. Zhang, and W. Fang. 2015. Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption. ACS Sustainable Chemistry & Engineering 3 (12):3324–31. doi:10.1021/acssuschemeng.5b00932.
  • Yu, B., A. D. Shan, D. L. Zhang, Z. Y. Lou, H. P. Yuan, X. T. Huang, N. W. Zhu, and X. F. Hu. 2015. Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. Bioresource Technology 189:154–61. doi:10.1016/j.biortech.2015.03.144.
  • Zhai, N., T. Zhang, D. Yin, G. Yang, X. Wang, G. Ren, and Y. Feng. 2015. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management 38:126–31. doi:10.1016/j.wasman.2014.12.027.
  • Zhang, J., M. Chen, Q. Sui, J. Tong, C. Jiang, X. Lu, Y. Zhang, and Y. Wei. 2016b. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research 91:339–49. doi:10.1016/j.watres.2016.01.010.
  • Zhang, J., Q. Sui, H. Zhong, X. Meng, Z. Wang, Y. Wang, and Y. Wei. 2018. Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure. Bioresource Technology 258:135–41. doi:10.1016/j.biortech.2018.03.005.
  • Zhang, J., Y. Zhang, X. Quan, and S. Chen. 2013. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)- Anaerobic reactor. Water Research 47:5719–28. doi:10.1016/j.watres.2013.06.056.
  • Zhang, Q., J. Hu, and D.-J. Lee. 2016. Biogas from anaerobic digestion processes: Research updates. Renewable Energy 98:108–19. doi:10.1016/j.renene.2016.02.029.
  • Zhang, S., J. Chang, C. Lin, Y. Pan, K. Cui, X. Zhang, P. Liang, and X. Huang. 2017. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon. Bioresource Technology 245:132–37.
  • Zhang, T., Y. Yang, and A. Pruden. 2015b. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Applied Microbiology and Biotechnology 99:7771–79. doi:10.1007/s00253-015-6688-9.
  • Zhang, W., L. Zhang, and A. Li. 2015. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S,S]-EDDS via improving metals bioavailability. Water Research 84:266–77. doi:10.1016/j.watres.2015.07.010.
  • Zhang, Y., Y. Feng, Q. Yu, Z. Xu, and X. Quan. 2014. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresource Technology 159:297–304. doi:10.1016/j.biortech.2014.02.114.
  • Zhao, Z., Y. Li, X. Quan, and Y. Zhang. 2017. Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Research 115:266–77. doi:10.1016/j.watres.2017.02.067.
  • Zhao, Z., Y. Zhang, Y. Li, X. Quan, and Z. Zhao. 2018. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste activated sludge digestion. Water Research 144:126–33. doi:10.1016/j.watres.2018.07.028.
  • Zhen, G., X. Lu, Y. Li, Y. Liu, and Y. Zhao. 2015. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chemical Engineering Journal 263:461–70. doi:10.1016/j.cej.2014.11.003.
  • Zheng, W., X. Ming, D. B. Wang, Q. Yang, K. Luo, G. J. Yang, and G. M. Zeng. 2013. Removal and recovery of phosphorus during anaerobic digestion of excess sludge by the addition of waste iron scrap. Journal of the Serbian Chemical Society 78 (2):303–12. doi:10.2298/JSC120205057Z.
  • Zhu, H., P. Seto, and W. J. Parker. 2014. Enhanced dark fermentative hydrogen production under the effect of zero-valent iron shavings. International Journal of Hydrogen Energy 39:19331–36. doi:10.1016/j.ijhydene.2014.06.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.