186
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isothermal reduction behavior and kinetics of Russian high-chromium vanadium-titanium magnetite pellets under gas atmospheres of CO–CO2–N2 and CO–N2 at 873 K–1173 K

, , , &
Pages 5490-5507 | Received 29 Oct 2019, Accepted 12 May 2020, Published online: 29 Jul 2020

References

  • Cheng, G. J., Z. X. Gao, H. Yang, and X. X. Xue. 2017a. Effect of diboron trioxide on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets. International Journal of Minerals, Metallurgy, and Materials 24:1228–40. doi:10.1007/s12613-017-1515-1.
  • Cheng, G. J., J. X. Liu, Z. G. Liu, M. S. Chu, and X. X. Xue. 2015. Non-isothermal reduction mechanism and kinetics of high chromium vanadium-titanium magnetite pellets. Ironmaking & Steelmaking 42:17–26. doi:10.1179/1743281214Y.0000000193.
  • Cheng, G. J., X. X. Xue, Z. X. Gao, T. Jiang, H. Yang, and P. N. Duan. 2016a. Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium-titanium magnetite pellets. ISIJ International 56:1938–47. doi:10.2355/isijinternational.ISIJINT-2016-234.
  • Cheng, G. J., X. X. Xue, T. Jiang, and P. N. Duan. 2016b. Effect of TiO2 on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets. Metallurgical and Materials Transactions B 47B:1713–26. doi:10.1007/s11663-016-0628-7.
  • Cheng, G. J., X. X. Xue, J. X. Liu, T. Jiang, and P. N. Duan. 2017b. Reduction kinetics and mechanism of pellets prepared from high chromium vanadium-titanium magnetite concentrate. Mineral Processing and Extractive Metallurgy 126:125–32. doi:10.1080/03719553.2016.1181418.
  • Du, H. G. 1972. Principle of smelting vanadium-titanium magnetite in the blast furnace. Beijing, China: Science Press.
  • El-Geassy, A. A. 1996. Reduction of CaO and/or MgO-doped Fe2O3, compacts with carbon monoxide 1173-1473 K. ISIJ International 6:344–53.
  • Fu, W. G., and H. E. Xie. 2011. Progress in technologies of vanadium-bearing titanomagnetite smelting in PanGang. Steel Research international 82 (5):501–04. doi:10.1002/srin.201100033.
  • Geng, W. W., and H. B. Zuo. 2019. Non-isothermal gasification of biomass char and coal char mixture in CO2 condition. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/15567036.2019.1684601.
  • Han, G. H., T. Jiang, Y. B. ZHANG, Y. F. HUANG, and G. H. Li. 2011. High-temperature oxidation behavior of vanadium, titanium-bearing magnetite pellet. Journal of Iron and Steel Research International 18:14–19. doi:10.1016/S1006-706X(11)60097-6.
  • He, Z. W., J. X. Liu, S. T. Yang, H. Yang, and X. X. Xue. 2016. Partition of valuable components between slag and metal in the blast furnace operating with high chromium, vanadium, titanium, magnetite ores. Metallurgical Research & Technology 113 (6):607. doi:10.1051/metal/2016041.
  • Li, W., G. Q. Fu, M. S. Chu, and M. Y. Zhu. 2017a. Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO. Journal of Iron and Steel Research International 24:34–42. doi:10.1016/S1006-706X(17)30006-7.
  • Li, W., G. Q. Fu, M. S. Chu, and M. Y. Zhu. 2019. Effect of porosity of Hongge vanadium titanomagnetite-oxidized pellet on its reduction swelling behavior and mechanism with hydrogen-rich gases. Powder Technology 343:194–203. doi:10.1016/j.powtec.2018.11.027.
  • Li, W., N. Wang, G. Q. Fu, M. S. Chu, and M. Y. Zhu. 2017b. Influence of roasting characteristics on gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet with simulated shaft furnace gases. Powder Technology 3101:343–50. doi:10.1016/j.powtec.2017.01.062.
  • Liu, S. S., Y. F. Guo, G. Z. Qiu, T. Jiang, and F. Chen. 2014. Solid-state reduction kinetics and mechanism of pre-oxidized vanadium-titanium magnetite concentrate. Transactions of Nonferrous Metals Society of China 24:3372–77. doi:10.1016/S1003-6326(14)63479-8.
  • Nasr, M. I., A. A. Omar, M. H. Khedr, and A. A. El-Geassy. 1995. Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction. ISIJ International 35:1043–49. doi:10.2355/isijinternational.35.1043.
  • Qin, J., Y. Wang, Z. X. You, L. Y. Wen, and X. W. Lv. 2020. Carbonization and nitridation of vanadium–bearing titanomagnetite during carbothermal reduction with coal. Journal of Materials Research and Technology 9 (3):4272–82. in press. doi:10.1016/j.jmrt.2020.02.053.
  • Tang, J., M. S. Chu, F. Li, Y. T. Tang, Z. G. Liu, and X. X. Xue. 2015. Reduction mechanism of high-chromium vanadium–titanium magnetite pellets by H2-CO-CO2 gas mixtures. International Journal of Minerals, Metallurgy, and Materials 22:562–72. doi:10.1007/s12613-015-1108-9.
  • Tang, W. D., S. T. Yang, and X. X. Xue. 2019. Effect of B2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas. Transactions of Nonferrous Metals Society of China 29:1549–59. doi:10.1016/S1003-6326(19)65062-4.
  • Tian, Y. W., X. J. Zhai, and K. R. Liu. 2007. Physical chemistry of metallurgy. Beijing, China: Chemical Industry Press.
  • Yang, S. T., M. Zhou, T. Jiang, Y. J. Wang, and X. X. Xue. 2015. Effect of basicity on sintering behavior of low-titanium vanadium-titanium magnetite. Transactions of Nonferrous Metals Society of China 25:2087–94. doi:10.1016/S1003-6326(15)63819-5.
  • Yang, S. T., M. Zhou, T. Jiang, and X. X. Xue. 2018. Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium-titanium sinter reduced with CO gas at 873-1273 K. International Journal of Minerals, Metallurgy, and Materials 25:145–52. doi:10.1007/s12613-018-1557-z.
  • Yang, S. T., M. Zhou, X. X. Xue, T. Jiang, and C. Y. Sun. 2019. Isothermal reduction kinetics of chromium-bearing vanadium-titanium sinter reduced with CO gas at 1173 K. JOM 71:2812–20. doi:10.1007/s11837-019-03533-5.
  • Zhang, Y. M. 2002. Theory and technology of pelletization. Beijing, China: Metallurgical Industry Press.
  • Zhou, M., S. T. Yang, T. Jiang, and X. X. Xue. 2015. Influence of MgO in form of magnesite on properties and mineralogy of high chromium, vanadium, titanium magnetite sinters. Ironmaking & Steelmaking 42:217–25. doi:10.1179/1743281214Y.0000000223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.